1
|
Yao Q, Li Q, Jiang S, Yang J, Xu X, Li X. Enhancing the Photovoltaic Performance of Directional-Growing Two-Dimensional Perovskites by Out-of-Plane Polarization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24252-24261. [PMID: 40230263 DOI: 10.1021/acsami.5c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Two-dimensional (2D) perovskites have great application potential in the photovoltaic field, but the carriers can only be transmitted in-plane due to the limitation of the quantum well structure. It is usually necessary to induce a vertical orientation in photovoltaic devices to overcome this limitation. Here we find that the carrier limitation of 2D perovskites can be overcome by out-of-plane polarization. 4-(Aminomethyl)piperidiniumPbI4 (4-AMPI) is a low-band-gap 2D perovskite ferroelectric with out-of-plane polarization. In this work, 4-AMPI was annealed at different temperatures to fabricate photovoltaic devices growing along different crystal planes. Under the irradiation of AM 1.5G, the parallel-grown 4-AMPI films exhibit a photocurrent density comparable to that of vertically grown films, indicating that out-of-plane polarization can help carriers overcome quantum well constraints. Compared with the nonferroelectric 3-(aminomethyl)piperidiniumPbI4 (3-AMPI), the photocurrent density of 4-AMPI with out-of-plane polarization is significantly higher, which is attributed to the advantage of out-of-plane polarization for the generation and transport of carriers. This work suggests that 2D molecular ferroelectrics with out-of-plane polarization are potential candidates for the fabrication of photovoltaic devices.
Collapse
Affiliation(s)
- Qifu Yao
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
| | - Qishuo Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Shaojie Jiang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, P. R. China
| | - Jianping Yang
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
| | - Xingliang Xu
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xing'ao Li
- Jiangsu Provincial Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, PR China
- Department of Applied Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Yuan S, Zheng D, Zhang T, Wang Y, Qian F, Wang L, Li X, Zheng H, Diao Z, Zhang P, Pauporté T, Li S. Scalable preparation of perovskite films with homogeneous structure via immobilizing strategy for high-performance solar modules. Nat Commun 2025; 16:2052. [PMID: 40021660 PMCID: PMC11871028 DOI: 10.1038/s41467-025-57303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Scalable fabrication of perovskite films with homogeneous structure remains a critical challenge in bridging power conversion efficiency gap between solar modules and laboratory-scale cells. To address this, we propose a slot-die coating strategy with pyrrodiazole additives in the perovskite precursor solution to simultaneously immobilize lead iodide and formamidinium iodide. This approach enhances wet film stability by suppressing colloidal aggregation, retards the crystal growth process, and ensures a consistent growth rate across the films. These effects promote the formation of large, monolithic grains, enabling large-area perovskite films with homogeneous structure, excellent uniformity, and low defect density under ambient conditions. Using this strategy, we achieved 10 cm × 10 cm inverted perovskite solar modules with a certified efficiency of 20.3%, along with good working stability and excellent application demonstration, showcasing its great potential for industrialization.
Collapse
Affiliation(s)
- Shihao Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China
| | - Daming Zheng
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), UMR8247, Paris, France
| | - Ting Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China.
| | - Yafei Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China
| | - Feng Qian
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China
| | - Lei Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China
| | - Xiaobo Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China
| | - Hualin Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China
| | - Zecheng Diao
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China
| | - Peng Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China
| | - Thierry Pauporté
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), UMR8247, Paris, France
| | - Shibin Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Zhang X, Li Z, Hong E, Yan T, Fang X. Effective Dual Cation Release in Quasi-2D Perovskites for Ultrafast UV Light-Powered Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412014. [PMID: 39551980 DOI: 10.1002/adma.202412014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Ruddlesden-Popper quasi-2D perovskites represent robust candidates for optoelectronic applications, achieving a delicate balance between outstanding photoresponse and stability. However, mitigating the internal defects in polycrystalline films remains challenging, and their optoelectronic performances still lag behind that of their 3D counterparts. This work highlights the profound impact of defect passivation at the buried interface and grain boundaries through a dual-cation-release strategy. Cations released from the pre-deposited inorganic iodide buffer layer effectively repair deep-level defects by inducing low-dimensional phase reconstruction and interacting with undercoordinated ions. The resulting quasi-2D perovskite polycrystalline films feature large grain size (>2 µm) and minimum surface roughness, along with alleviated out-of-plane residual tensile strain, which is beneficial for inhibiting the initiation and propagation of cracks. The fabricated photodetector demonstrates drastically improved self-powered photoresponse capability, with maximum responsivity up to 0.41 A W-1 at 430 nm and an ultrafast response speed of 161 ns / 1.91 µs. Moreover, this strategy is compatible with the photolithography-assisted hydrophobic-hydrophilic patterning process for fabricating pixelated photodetector arrays, which enables high-sensitivity imaging. This study presents a feasible defect passivation approach in quasi-2D perovskites, thereby providing insights into the fabrication of high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Ziqing Li
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Enliu Hong
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Tingting Yan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
4
|
Yang Y, Feng S, Li X, Qin M, Li L, Yang X, Tai R. Synchrotron Radiation-Based In Situ GIWAXS for Metal Halide Perovskite Solution Spin-Coating Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403778. [PMID: 38992962 PMCID: PMC11425288 DOI: 10.1002/advs.202403778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Indexed: 07/13/2024]
Abstract
Solution-processable perovskite-based devices are potentially very interesting because of their relatively cheap fabrication cost but outstanding optoelectronic performance. However, the solution spin-coating process involves complicated processes, including perovskite solution droplets, nucleation of perovskite, and formation of intermediate perovskite films, resulting in complicated crystallization pathways for perovskite films under annealing. Understanding and therefore controlling the fabrication process of perovskites is difficult. Recently, synchrotron radiation-based in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) techniques, which possess the advantages of high collimation, high resolution, and high brightness, have enabled to bridge complicated perovskite structure information with device performance by revealing the real-time crystallization pathways of perovskites during the spin-coating process. Herein, the developments of synchrotron radiation-based in situ GIWAXS are discussed in the study of the crystallization process of perovskites, especially revealing the important crystallization mechanisms of state-of-the-art perovskite optoelectronic devices with high performance. At the end, several potential applications and challenges associated with in situ GIWAXS techniques for perovskite-based devices are highlighted.
Collapse
Affiliation(s)
- Yingguo Yang
- School of Microelectronics, Fudan University, Shanghai, 200433, China
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute & Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
- State Key Laboratory of Photovoltaic Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shanglei Feng
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute & Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaoxi Li
- School of Microelectronics, Fudan University, Shanghai, 200433, China
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China
| | - Minchao Qin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute & Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Renzhong Tai
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute & Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, China
| |
Collapse
|
5
|
Yue Y, Chai N, Li M, Zeng Z, Li S, Chen X, Zhou J, Wang H, Wang X. Ultrafast Photoexcitation Induced Passivation for Quasi-2D Perovskite Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407347. [PMID: 38857569 DOI: 10.1002/adma.202407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Quasi-2D perovskites exhibit great potential in photodetectors due to their exceptional optoelectronic responsivity and stability, compared to their 3D counterparts. However, the defects are detrimental to the responsivity, response speed, and stability of perovskite photodetectors. Herein, an ultrafast photoexcitation-induced passivation technique is proposed to synergistically reduce the dimensionality at the surface and induce oxygen doping in the bulk, via tuning the photoexcitation intensity. At the optimal photoexcitation level, the excited electrons and holes generate stretching force on the Pb─I bonds at the interlayered [PbI6]-, resulting in low dimensional perovskite formation, and the absorptive oxygen is combined with I vacancies at the same time. These two induced processes synergistically boost the carrier transport and interface contact performance. The most outstanding device exhibits a fast response speed with rise/decay time of 201/627 ns, with a peak responsivity/detectivity of 163 mA W-1/4.52 × 1010 Jones at 325 nm and the enhanced cycling stability. This work suggests the possibility of a new passivation technique for high performance 2D perovskite optoelectronics.
Collapse
Affiliation(s)
- Yunfan Yue
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - NianYao Chai
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mingyu Li
- School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Zhongle Zeng
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Sheng Li
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiangyu Chen
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiakang Zhou
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Huan Wang
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xuewen Wang
- Center of Femtosecond Laser Manufacturing for Advanced Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, 528216, P. R. China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
6
|
Zhao K, Wang Y, Lin K, Ji T, Shi L, Zheng K, Cui Y, Li G. High-Quality Solution-Processed Quasi-2D Perovskite for Low-Threshold Lasers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22361-22368. [PMID: 38628106 DOI: 10.1021/acsami.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Spin-coated quasi-two-dimensional halide perovskite films, which exhibit superior optoelectronic properties and environmental stability, have recently been extensively studied for lasers. Crystallinity is of great importance for the laser performance. Although some parameters related to the spin-coating process have been studied, the in-depth understanding and effective control of the acceleration rate on two-dimensional perovskite crystallization during spin-coating are still unknown. Here we investigate the effect of solvent evaporation on the microstructure of the final perovskite films during the spin-coating process. The crystallization quality of the film can be significantly improved by controlling solvent evaporation. As a result, the prepared quasi-2D perovskite film exhibits a stimulated emission threshold (pump: 343 nm, 6 kHz, 290 fs) of 550 nm as low as 16.2 μJ/cm2. Transient absorption characterization shows that the radiative biexciton recombination time is reduced from 738.5 to 438.3 ps, benefiting from the improved crystallinity. The faster biexciton recombination significantly enhanced the photoluminescence efficiency, which is critical for population inversion. This work could contribute to the development of low-threshold lasers.
Collapse
Affiliation(s)
- Kefan Zhao
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yujing Wang
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Lin
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ting Ji
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Linlin Shi
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kaibo Zheng
- Chemical Physics Division and NanoLund, Lund University, Box 124, Lund 22100, Sweden
| | - Yanxia Cui
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030006, China
| | - Guohui Li
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030006, China
| |
Collapse
|
7
|
Hu S, Thiesbrummel J, Pascual J, Stolterfoht M, Wakamiya A, Snaith HJ. Narrow Bandgap Metal Halide Perovskites for All-Perovskite Tandem Photovoltaics. Chem Rev 2024; 124:4079-4123. [PMID: 38527274 PMCID: PMC11009966 DOI: 10.1021/acs.chemrev.3c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
All-perovskite tandem solar cells are attracting considerable interest in photovoltaics research, owing to their potential to surpass the theoretical efficiency limit of single-junction cells, in a cost-effective sustainable manner. Thanks to the bandgap-bowing effect, mixed tin-lead (Sn-Pb) perovskites possess a close to ideal narrow bandgap for constructing tandem cells, matched with wide-bandgap neat lead-based counterparts. The performance of all-perovskite tandems, however, has yet to reach its efficiency potential. One of the main obstacles that need to be overcome is the─oftentimes─low quality of the mixed Sn-Pb perovskite films, largely caused by the facile oxidation of Sn(II) to Sn(IV), as well as the difficult-to-control film crystallization dynamics. Additional detrimental imperfections are introduced in the perovskite thin film, particularly at its vulnerable surfaces, including the top and bottom interfaces as well as the grain boundaries. Due to these issues, the resultant device performance is distinctly far lower than their theoretically achievable maximum efficiency. Robust modifications and improvements to the surfaces of mixed Sn-Pb perovskite films are therefore critical for the advancement of the field. This Review describes the origins of imperfections in thin films and covers efforts made so far toward reaching a better understanding of mixed Sn-Pb perovskites, in particular with respect to surface modifications that improved the efficiency and stability of the narrow bandgap solar cells. In addition, we also outline the important issues of integrating the narrow bandgap subcells for achieving reliable and efficient all-perovskite double- and multi-junction tandems. Future work should focus on the characterization and visualization of the specific surface defects, as well as tracking their evolution under different external stimuli, guiding in turn the processing for efficient and stable single-junction and tandem solar cell devices.
Collapse
Affiliation(s)
- Shuaifeng Hu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Jarla Thiesbrummel
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
| | - Jorge Pascual
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Polymat, University of the
Basque Country UPV/EHU, 20018 Donostia-San
Sebastian, Spain
| | - Martin Stolterfoht
- Institute
for Physics and Astronomy, University of
Potsdam,14476 Potsdam-Golm, Germany
- Electronic
Engineering Department, The Chinese University
of Hong Kong, Hong Kong 999077, SAR China
| | - Atsushi Wakamiya
- Institute
for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Oxford OX1 3PU, United
Kingdom
| |
Collapse
|
8
|
Ozerova VV, Zhidkov IS, Emelianov NA, Korchagin DV, Shilov GV, Prudnov FA, Sedov IV, Kurmaev EZ, Frolova LA, Troshin PA. Enhancing Photostability of Complex Lead Halides through Modification with Antibacterial Drug Octenidine. MATERIALS (BASEL, SWITZERLAND) 2023; 17:129. [PMID: 38203983 PMCID: PMC10780031 DOI: 10.3390/ma17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The high power-conversion efficiencies of hybrid perovskite solar cells encourage many researchers. However, their limited photostability represents a serious obstacle to the commercialization of this promising technology. Herein, we present an efficient method for improving the intrinsic photostability of a series of commonly used perovskite material formulations such as MAPbI3, FAPbI3, Cs0.12FA0.88PbI3, and Cs0.10MA0.15FA0.75PbI3 through modification with octenidine dihydroiodide (OctI2), which is a widely used antibacterial drug with two substituted pyridyl groups and two cationic centers in its molecular framework. The most impressive stabilizing effects were observed in the case of FAPbI3 and Cs0.12FA0.88PbI3 absorbers that were manifested in significant suppression or even blocking of the undesirable perovskite films' recrystallization and other decomposition pathways upon continuous 110 mW/cm2 light exposure. The achieved material photostability-within 9000 h for the Oct(FA)n-1PbnI3n+1 (n = 40-400) and 20,000 h for Oct(Cs0.12FA0.88)n-1PbnI3n+1 (where n = 40-400) formulations-matches the highest values ever reported for complex lead halides. It is important to note that the stabilizing effect is maintained when OctI2 is used only as a perovskite surface-modifying agent. Using a two-cation perovskite composition as an example, we showed that the performances of the solar cells based on the developed Oct(Cs0.12FA0.88)399Pb400I1201 absorber material are comparable to that of the reference devices based on the unmodified perovskite composition. These findings indicate a great potential of the proposed approach in the design of new highly photostable and efficient light absorbers. We believe that the results of this study will also help to establish important guidelines for the rational material design to improve the operational stability of perovskite solar cells.
Collapse
Affiliation(s)
- Victoria V. Ozerova
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Ivan S. Zhidkov
- Institute of Physics and Technology, Ural Federal University, 19 ul. Mira, 620002 Yekaterinburg, Russia (E.Z.K.)
- M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18 ul. S. Kovalevskoi, 620108 Yekaterinburg, Russia
| | - Nikita A. Emelianov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Denis V. Korchagin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Gennady V. Shilov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Fedor A. Prudnov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Igor V. Sedov
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Ernst Z. Kurmaev
- Institute of Physics and Technology, Ural Federal University, 19 ul. Mira, 620002 Yekaterinburg, Russia (E.Z.K.)
- M. N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18 ul. S. Kovalevskoi, 620108 Yekaterinburg, Russia
| | - Lyubov A. Frolova
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
| | - Pavel A. Troshin
- Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, 1 prosp. Semenova, 142432 Chernogolovka, Russia; (V.V.O.); (N.A.E.); (D.V.K.); (G.V.S.); (F.A.P.); (I.V.S.)
- Zhengzhou Research Institute, Harbin Institute of Technology, Longyuan East 7th 26, Jinshui District, Zhengzhou 450003, China
| |
Collapse
|
9
|
Wang S, Yang T, Yang Y, Du Y, Huang W, Cheng L, Li H, Wang P, Wang Y, Zhang Y, Ma C, Liu P, Zhao G, Ding Z, Liu SF, Zhao K. In Situ Self-Elimination of Defects via Controlled Perovskite Crystallization Dynamics for High-Performance Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305314. [PMID: 37652150 DOI: 10.1002/adma.202305314] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Understanding and controlling crystallization is crucial for high-quality perovskite films and efficient solar cells. Herein, the issue of defects in formamidinium lead iodide (FAPbI3 ) formation is addressed, focusing on the role of intermediates. A comprehensive picture of structural and carrier evolution during crystallization is demonstrated using in situ grazing-incidence wide-angle X-ray scattering, ultraviolet-visible spectroscopy and photoluminescence spectroscopy. Three crystallization stages are identified: precursors to the δ-FAPbI3 intermediate, then to α-FAPbI3 , where defects spontaneously emerge. A hydrogen-sulfate-based ionic liquid additive is found to enable the phase-conversion pathway of precursors → solvated intermediates → α-FAPbI3 , during which the spontaneous generation of δ-FAPbI3 can be effectively circumvented. This additive extends the initial growth kinetics and facilitates solvent-FA+ ion exchange, which results in the self-elimination of defects during crystallization. Therefore, the improved crystallization dynamics lead to larger grain sizes and fewer defects within thin films. Ultimately, the improved perovskite crystallization dynamics enable high-performance solar cells, achieving impressive efficiencies of 25.14% at 300 K and 26.12% at 240 K. This breakthrough might open up a new era of application for the emerging perovskite photovoltaic technology to low-temperature environments such as near-space and polar regions.
Collapse
Affiliation(s)
- Shiqiang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yachao Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wenliang Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Liwei Cheng
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Peijun Wang
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yajie Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Yi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Pengchi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Guangtao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zicheng Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices;, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
10
|
Zhao Y, Feng W, Li M, Lu J, Qin X, Lin K, Luo J, Zhang WH, Lim EL, Wei Z. Efficient Perovskite Light-Emitting Diodes with Chemically Bonded Contact and Regulated Charge Behavior. NANO LETTERS 2023; 23:8560-8567. [PMID: 37676859 DOI: 10.1021/acs.nanolett.3c02335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Efficient charge injection and radiative recombination are essential to achieving high-performance perovskite light-emitting diodes (Pero-LEDs). However, the perovskite emission layer (EML) and the electron transport layer (ETL) form a poor physically interfacial contact and non-negligible charge injection barrier, limiting the device performance. Herein, we utilize a phosphine oxide, 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), to treat the perovskite/ETL interface and form a chemically bonded contact. Specifically, PO-T2T firmly bonds on the perovskite's surface and grain boundaries through a dative bond, effectively passivating the uncoordinated lead defects. Additionally, PO-T2T has high electron mobility and establishes an electron transport highway to bridge the ETL and EML. As a result, a maximum external quantum efficiency (EQEmax) of 22.06% (average EQEmax of 20.02 ± 1.00%) and maximum luminance (Lmax) of 103286 cd m-2 have been achieved for the champion device. Our results indicate that EML/ETL interface modifications are crucial for the fabrication of highly efficient Pero-LEDs.
Collapse
Affiliation(s)
- Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenjing Feng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Mingliang Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, People's Republic of China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiangqian Qin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kebin Lin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jiefeng Luo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wen-Hua Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, People's Republic of China
| | - Eng Liang Lim
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Qin Z, Pols M, Qin M, Zhang J, Yan H, Tao S, Lu X. Over-18%-Efficiency Quasi-2D Ruddlesden-Popper Pb-Sn Mixed Perovskite Solar Cells by Compositional Engineering. ACS ENERGY LETTERS 2023; 8:3188-3195. [PMID: 37469391 PMCID: PMC10353033 DOI: 10.1021/acsenergylett.3c00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Quasi-two-dimensional (2D) Pb-Sn mixed perovskites show great potential in applications of single and tandem photovoltaic devices, but they suffer from low efficiencies due to the existence of horizontal 2D phases. Here, we obtain a record high efficiency of 18.06% based on 2D ⟨n⟩ = 5 Pb-Sn mixed perovskites (iso-BA2MA4(PbxSn1-x)5I16, x = 0.7), by optimizing the crystal orientation through a regulation of the Pb/Sn ratio. We find that Sn-rich precursors give rise to a mixture of horizontal and vertical 2D phases. Interestingly, increasing the Pb content can not only entirely suppress the unwanted horizontal 2D phase in the film but also enhance the growth of vertical 2D phases, thus significantly improving the device performance and stability. It is suggested that an increase of the Pb content in the Pb-Sn mixed systems facilitates the incorporation of iso-butylammonium (iso-BA+) ligands in vertically oriented perovskites because of the reduced lattice strain and increased interaction between the organic ligands and inorganic framework. Our work sheds light on the optimal conditions for fabricating stable and efficient 2D Pb-Sn mixed perovskite solar cells.
Collapse
Affiliation(s)
- Zhaotong Qin
- Department
of Physics, The Chinese University of Hong
Kong, Shatin 999077, Hong Kong SAR, People’s Republic of China
| | - Mike Pols
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Minchao Qin
- Department
of Physics, The Chinese University of Hong
Kong, Shatin 999077, Hong Kong SAR, People’s Republic of China
| | - Jianquan Zhang
- Department
of Chemistry, Hong Kong University of Science
and Technology, Kowloon 999077, Hong Kong SAR, People’s Republic of China
| | - He Yan
- Department
of Chemistry, Hong Kong University of Science
and Technology, Kowloon 999077, Hong Kong SAR, People’s Republic of China
| | - Shuxia Tao
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Xinhui Lu
- Department
of Physics, The Chinese University of Hong
Kong, Shatin 999077, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
12
|
Wang C, Gu J, Li J, Cai J, Li L, Yao J, Lu Z, Wang X, Zou G. Two-dimensional (n = 1) ferroelectric film solar cells. Natl Sci Rev 2023; 10:nwad061. [PMID: 37600562 PMCID: PMC10434298 DOI: 10.1093/nsr/nwad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 08/22/2023] Open
Abstract
Molecular ferroelectrics that have excellent ferroelectric properties, a low processing temperature, narrow bandgap, and which are lightweight, have shown great potential in the photovoltaic field. However, two-dimensional (2D) perovskite solar cells with high tunability, excellent photo-physical properties and superior long-term stability are limited by poor out-of-plane conductivity from intrinsic multi-quantum-well electronic structures. This work uses 2D molecular ferroelectric film as the absorbing layer to break the limit of multiple quantum wells. Our 2D ferroelectric solar cells achieve the highest open-circuit voltage (1.29 V) and the best efficiency (3.71%) among the 2D (n = 1) Ruddlesden-Popper perovskite solar cells due to the enhanced out-of-plane charge transport induced by molecular ferroelectrics with a strong saturation polarization, high Curie temperature and multiaxial characteristics. This work aims to break the inefficient out-of-plane charge transport caused by the limit of the multi-quantum-well electronic structure and improve the efficiency of 2D ferroelectric solar cells.
Collapse
Affiliation(s)
- Chen Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jiahao Gu
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Jun Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Jianyu Cai
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Lutao Li
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Junjie Yao
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Zheng Lu
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Xiaohan Wang
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| | - Guifu Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215000, China
| |
Collapse
|
13
|
Sun Y, Yao Q, Xing W, Jiang H, Li Y, Xiong W, Zhu W, Zheng Y. Residual Strain Evolution Induced by Crystallization Kinetics During Anti-Solvent Spin Coating in Organic-Inorganic Hybrid Perovskite. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2205986. [PMID: 37096861 DOI: 10.1002/advs.202205986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Indexed: 05/03/2023]
Abstract
Organic-inorganic hybrid perovskite (OIHP) polycrystalline thin films are attractive due to their outstanding photoelectronic properties. The anti-solvent spin coating method is the most widely used to synthesize these thin films, and the residual strain is inevitably originates and evolves during the process. However, this residual strain evolution induced by crystallization kinetics is still poorly understood. In this work, the in situ and ex situ synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) are utilized to characterize the evolution and distribution of the residual strain in the OIHP polycrystalline thin film during the anti-solvent spin coating process. A mechanical model is established and the mechanism of the crystallization kinetics-induced residual strain evolution process is discussed. This work reveals a comprehensive understanding of the residual strain evolution during the anti-solvent spin coating process in the OIHP polycrystalline thin films and provides important guidelines for the residual strain-related strain engineering, morphology control, and performance enhancement.
Collapse
Affiliation(s)
- Y Sun
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Q Yao
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - W Xing
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - H Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Y Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - W Xiong
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - W Zhu
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Y Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Szostak R, de Souza Gonçalves A, de Freitas JN, Marchezi PE, de Araújo FL, Tolentino HCN, Toney MF, das Chagas Marques F, Nogueira AF. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chem Rev 2023; 123:3160-3236. [PMID: 36877871 DOI: 10.1021/acs.chemrev.2c00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stability required for scale-up and consequent commercial deployment of these cells.
Collapse
Affiliation(s)
- Rodrigo Szostak
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Agnaldo de Souza Gonçalves
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil
| | - Jilian Nei de Freitas
- Center for Information Technology Renato Archer (CTI), 13069-901 Campinas, SP, Brazil
| | - Paulo E Marchezi
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Francineide Lopes de Araújo
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Michael F Toney
- Department of Chemical & Biological Engineering, and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Ana Flavia Nogueira
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
15
|
Zhang X, Li Z, Yan T, Su L, Fang X. Phase-Modulated Multidimensional Perovskites for High-Sensitivity Self-Powered UV Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206310. [PMID: 36587965 DOI: 10.1002/smll.202206310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 06/17/2023]
Abstract
2D Ruddlesden-Popper perovskites (PVKs) have recently shown overwhelming potential in various optoelectronic devices on account of enhanced stability to their 3D counterparts. So far, regulating the phase distribution and orientation of 2D perovskite thin films remains challenging to achieve efficient charge transport. This work elucidates the balance struck between sufficient gradient sedimentation of perovskite colloids and less formation of small-n phases, which results in the layered alignment of phase compositions and thus in enhanced photoresponse. The solvent engineering strategy, together with the introduction of poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS) and PC71 BM layer jointly contribute to outstanding self-powered performance of indium tin oxide/PEDOT:PSS/PVK/PC71 BM/Ag device, with a photocurrent of 18.4 µA and an on/off ratio up to 2800. The as-fabricated photodetector exhibits high sensitivity characteristics with the peak responsivity of 0.22 A W-1 and the detectivity up to 1.3 × 1012 Jones detected at UV-A region, outperforming most reported perovskite-based UV photodetectors and maintaining high stability over a wide spectrum ranging from UV to visible region. This discovery supplies deep insights into the control of ordered phases and crystallinity in quasi-2D perovskite films for high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Ziqing Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Tingting Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Li Su
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
16
|
Niu Y, Yan Y, Ouyang X, Yang Z, Li J, Han P, Ding CF, Zhou Y, Yang L, Yang Y, Heydari A, Li L, Lan W, Xu C. Highly Fluorescent Collagen-Based Quantum Dots as an Efficient Interlinkage in the 2D Perovskite Bulk for Improved Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34706-34713. [PMID: 35862432 DOI: 10.1021/acsami.2c07097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A design-inexpensive, effective, and easy-to-prepare additive in the large-scale preparation of perovskite solar cells (PSCs) is urgently desired to alleviate the future energy crisis. Carbon-based quantum dots have demonstrated novel nanomaterials with excellent chemical stability and high electrical conductivity, which exhibit great potential as additives for perovskite optoelectronics. Herein, we designed novel highly fluorescent collagen-based quantum dots (Col-QDs) and thoroughly studied the micromorphological characteristics, photoluminescence properties, and the states of surface-functionalized groups on the Col-QDs. It is found that the introduction of Col-QDs in the two-dimensional (2D) perovskite precursor can be further confirmed as an efficient interlinkage via Col-Pb bands in the pure 2D perovskite heterojunction, which significantly improves the crystallinity, orientation, and interlayer coupling of perovskite crystal plates, as observed by grazing incidence X-ray diffraction (GIWAXS) and X-ray photoelectron spectroscopy (XPS). Finally, the champion Col-QD additive can efficiently modulate the photovoltaic performance of pure 2D PSCs with a significant increase of photoelectric conversion efficiency (PCE) from 8.18% up to 10.45%, which ranks among the best efficiencies of highly pure 2D PSCs. These results provide a facile and feasible approach to modulate the interlayer interaction of pure 2D perovskites and further improve their output of PSCs, which would further facilitate the burgeoning applications of the Col-QDs in various perovskite-based optical-related fields.
Collapse
Affiliation(s)
- Yingchun Niu
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yajie Yan
- Fudan University, Shanghai 200433, China
| | - Xiangcheng Ouyang
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Ziji Yang
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Peiyu Han
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chuan-Fan Ding
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang, Ningbo University, Ningbo 315211, China
| | - Yang Zhou
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lifeng Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yingguo Yang
- Fudan University, Shanghai 200433, China
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ali Heydari
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wenjie Lan
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| | - Chunming Xu
- State Key Laboratory of Petroleum Resources and Prospecting, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
17
|
Organic–Inorganic Hybrid Perovskite Materials for Ultrasonic Transducer in Medical Diagnosis. CRYSTALS 2022. [DOI: 10.3390/cryst12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ultrasonic transducer is considered the most important component of ultrasound medical instruments, and its key active layer is generally fabricated by piezoelectric materials, such as BaTiO3, Pb (Zn, Ti)O3, PVDF, etc. As the star material, perovskite photovoltaic materials (organic and inorganic halide perovskite materials, such as CH3NH3PbI3, CsPbI3, etc.) have great potential to be widely used in solar cells, LEDs, detectors, and photoelectric and piezoelectric detectors due to their outstanding photoelectric and piezoelectric effects. Herein, we firstly discussed the research progress of commonly used piezoelectric materials and the corresponding piezoelectric effects, the current key scientific status, as well as the current application status in the field of ultrasound medicine. Then, we further explored the current progress of perovskite materials used in piezoelectric-effect devices, and their research difficulties. Finally, we designed an ideal ultrasonic transducer fabricated by perovskite photovoltaic materials and considered the future application prospects of organic and inorganic halide perovskite material in the field of ultrasound.
Collapse
|
18
|
Li Z, Yang S, Ye C, Wang G, Ma B, Yao H, Wang Q, Peng G, Wang Q, Zhang HL, Jin Z. Ordered Element Distributed C 3 N Quantum Dots Manipulated Crystallization Kinetics for 2D CsPbI 3 Solar Cells with Ultra-High Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108090. [PMID: 35142051 DOI: 10.1002/smll.202108090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) CsPbI3 is developed to conquer the phase-stability problem of CsPbI3 by introducing bulky organic cations to produce a steric hindrance effect. However, organic cations also inevitably increase the formation energy and difficulty in crystallization kinetics regulation. Such poor crystallization process modulation of 2D CsPbI3 leads to disordered phase-arrangement, which impedes the transport of photo-generated carriers and worsens device performance. Herein, a type of C3 N quantum dots (QDs) with ordered carbon and nitrogen atoms to manipulate the crystallization process of 2D CsPbI3 for improving the crystallization pathway, phase-arrangement and morphology, is introduced. Combination analyses of theoretical simulation, morphology regulation and femtosecond transient absorption (fs-TA) characterization, show that the C3 N QDs induce the formation of electron-rich regions to adsorb bulky organic cations and provide nucleation sites to realize a bi-directional crystallization process. Meanwhile, the quality of 2D CsPbI3 film is improved with lower trap density, higher surface potential, and compact morphology. As a result, the power conversion efficiency (PCE) of the optimized device (n = 5) boosts to an ultra-high value of 15.63% with strengthened environmental stability. Moreover, the simple C3 N QDs insertion method shows good universality to other bulky organic cations of Ruddlesden-Popper and Dion-Jacobson, providing a good modulation strategy for other optoelectronic devices.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Siwei Yang
- Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Bo Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & Key Laboratory of Special Function Materials and Structure Design & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Yao
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Wang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & Key Laboratory of Special Function Materials and Structure Design & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & Key Laboratory of Special Function Materials and Structure Design & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|