1
|
Dutta A, Schacherer J. The dynamics of loss of heterozygosity events in genomes. EMBO Rep 2025; 26:602-612. [PMID: 39747660 PMCID: PMC11811284 DOI: 10.1038/s44319-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic instability is a hallmark of tumorigenesis, yet it also plays an essential role in evolution. Large-scale population genomics studies have highlighted the importance of loss of heterozygosity (LOH) events, which have long been overlooked in the context of genetic diversity and instability. Among various types of genomic mutations, LOH events are the most common and affect a larger portion of the genome. They typically arise from recombination-mediated repair of double-strand breaks (DSBs) or from lesions that are processed into DSBs. LOH events are critical drivers of genetic diversity, enabling rapid phenotypic variation and contributing to tumorigenesis. Understanding the accumulation of LOH, along with its underlying mechanisms, distribution, and phenotypic consequences, is therefore crucial. In this review, we explore the spectrum of LOH events, their mechanisms, and their impact on fitness and phenotype, drawing insights from Saccharomyces cerevisiae to cancer. We also emphasize the role of LOH in genomic instability, disease, and genome evolution.
Collapse
Affiliation(s)
- Abhishek Dutta
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Tellini N, De Chiara M, Mozzachiodi S, Tattini L, Vischioni C, Naumova ES, Warringer J, Bergström A, Liti G. Ancient and recent origins of shared polymorphisms in yeast. Nat Ecol Evol 2024; 8:761-776. [PMID: 38472432 DOI: 10.1038/s41559-024-02352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Shared genetic polymorphisms between populations and species can be ascribed to ancestral variation or to more recent gene flow. Here, we mapped shared polymorphisms in Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus, which diverged 4-6 million years ago. We used a dense map of single-nucleotide diagnostic markers (mean distance 15.6 base pairs) in 1,673 sequenced S. cerevisiae isolates to catalogue 3,852 sequence blocks (≥5 consecutive markers) introgressed from S. paradoxus, with most being recent and clade-specific. The highly diverged wild Chinese S. cerevisiae lineages were depleted of introgressed blocks but retained an excess of individual ancestral polymorphisms derived from incomplete lineage sorting, perhaps due to less dramatic population bottlenecks. In the non-Chinese S. cerevisiae lineages, we inferred major hybridization events and detected cases of overlapping introgressed blocks across distinct clades due to either shared histories or convergent evolution. We experimentally engineered, in otherwise isogenic backgrounds, the introgressed PAD1-FDC1 gene pair that independently arose in two S. cerevisiae clades and revealed that it increases resistance against diverse antifungal drugs. Overall, our study retraces the histories of divergence and secondary contacts across S. cerevisiae and S. paradoxus populations and unveils a functional outcome.
Collapse
Affiliation(s)
- Nicolò Tellini
- CNRS, INSERM, IRCAN, Côte d'Azur University, Nice, France
| | | | | | | | | | - Elena S Naumova
- Kurchatov Complex for Genetic Research (GosNIIgenetika), National Research Center 'Kurchatov Institute', Moscow, Russia
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Gianni Liti
- CNRS, INSERM, IRCAN, Côte d'Azur University, Nice, France.
| |
Collapse
|
3
|
Stepchenkova EI, Zadorsky SP, Shumega AR, Aksenova AY. Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Int J Mol Sci 2023; 24:11960. [PMID: 37569333 PMCID: PMC10419131 DOI: 10.3390/ijms241511960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.
Collapse
Affiliation(s)
- Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Sergey P. Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Smukowski Heil C. Loss of Heterozygosity and Its Importance in Evolution. J Mol Evol 2023; 91:369-377. [PMID: 36752826 PMCID: PMC10276065 DOI: 10.1007/s00239-022-10088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
Loss of heterozygosity (LOH) is a mitotic recombination event that converts heterozygous loci to homozygous loci. This mutation event is widespread in organisms that have asexual reproduction like budding yeasts, and is also an important and frequent mutation event in tumorigenesis. Mutation accumulation studies have demonstrated that LOH occurs at a rate higher than the point mutation rate, and can impact large portions of the genome. Laboratory evolution experiments of heterozygous yeasts have revealed that LOH often unmasks beneficial recessive alleles that can confer large fitness advantages. Here, I highlight advances in understanding dominance, fitness, and phenotypes in laboratory evolved heterozygous yeast strains. I discuss best practices for detecting LOH in intraspecific and interspecific evolved clones and populations. Utilizing heterozygous strain backgrounds in laboratory evolution experiments offers an opportunity to advance our understanding of this important mutation type in shaping adaptation and genome evolution in wild, domesticated, and clinical populations.
Collapse
Affiliation(s)
- Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Lu M, Zhang QC, Zhu ZY, Peng F, Li Z, Wang Y, Li XY, Wang ZW, Zhang XJ, Zhou L, Gui JF. An efficient approach to synthesize sterile allopolyploids through the combined reproduction mode of ameiotic oogenesis and sperm-egg fusion in the polyploid Carassius complex. Sci Bull (Beijing) 2023; 68:1038-1050. [PMID: 37173259 DOI: 10.1016/j.scib.2023.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
The association between polyploidy and reproduction transition, which is an intriguing issue in evolutionary genetics, can also be exploited as an approach for genetic improvement in agriculture. Recently, we generated novel amphitriploids (NA3n) by integrating the genomes of the gynogenetic Carassius gibelio and sexual C. auratus, and found gynogenesis was recovered in most NA3n females (NA3n♀I). Here, we discovered a unique reproduction mode, termed ameio-fusiongenesis, which combines the abilities of both ameiotic oogenesis and sperm-egg fusion, in a few NA3n females (NA3n♀II). These females inherited ameiotic oogenesis to produce unreduced eggs from gynogenetic C. gibelio and sperm-egg fusion from sexual C. auratus. Subsequently, we utilized this unique reproduction mode to generate a group of synthetic alloheptaploids by crossing NA3n♀II with Megalobrama amblycephala. They contained all chromosomes of maternal NA3n♀II and a chromosomal set of paternal M. amblycephala. Intergenomic chromosome translocations between NA3n♀II and M. amblycephala were also observed in a few somatic cells. Primary oocytes of the alloheptaploid underwent severe apoptosis owing to incomplete double-strand break repair at prophase I. Although spermatocytes displayed similar chromosome behavior at prophase I, they underwent apoptosis due to chromosome separation failure at metaphase I. Therefore, the alloheptaploid females and males were all sterile. Finally, we established a sustainable clone for the large-scale production of NA3n♀II and developed an efficient approach to synthesize diverse allopolyploids containing genomes of different cyprinid species. These findings not only broaden our understanding of reproduction transition but also offer a practical strategy for polyploidy breeding and heterosis fixing.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin-Can Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Yu Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Klinkaewboonwong N, Ohnuki S, Chadani T, Nishida I, Ushiyama Y, Tomiyama S, Isogai A, Goshima T, Ghanegolmohammadi F, Nishi T, Kitamoto K, Akao T, Hirata D, Ohya Y. Targeted Mutations Produce Divergent Characteristics in Pedigreed Sake Yeast Strains. Microorganisms 2023; 11:1274. [PMID: 37317248 DOI: 10.3390/microorganisms11051274] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Modification of the genetic background and, in some cases, the introduction of targeted mutations can play a critical role in producing trait characteristics during the breeding of crops, livestock, and microorganisms. However, the question of how similar trait characteristics emerge when the same target mutation is introduced into different genetic backgrounds is unclear. In a previous study, we performed genome editing of AWA1, CAR1, MDE1, and FAS2 on the standard sake yeast strain Kyokai No. 7 to breed a sake yeast with multiple excellent brewing characteristics. By introducing the same targeted mutations into other pedigreed sake yeast strains, such as Kyokai strains No. 6, No. 9, and No. 10, we were able to create sake yeasts with the same excellent brewing characteristics. However, we found that other components of sake made by the genome-edited yeast strains did not change in the exact same way. For example, amino acid and isobutanol contents differed among the strain backgrounds. We also showed that changes in yeast cell morphology induced by the targeted mutations also differed depending on the strain backgrounds. The number of commonly changed morphological parameters was limited. Thus, divergent characteristics were produced by the targeted mutations in pedigreed sake yeast strains, suggesting a breeding strategy to generate a variety of sake yeasts with excellent brewing characteristics.
Collapse
Affiliation(s)
- Norapat Klinkaewboonwong
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Tomoya Chadani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Ikuhisa Nishida
- Sakeology Center, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Yuto Ushiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Saki Tomiyama
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomoyuki Nishi
- Sake Research Center, Asahi Sake Brewing Co., Ltd., Nagaoka, Niigata 949-5494, Japan
| | - Katsuhiko Kitamoto
- Department of Pharmaceutical and Medical Business Sciences, Nihon Pharmaceutical University, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima, Hiroshima 739-0046, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
- Sakeology Course, Graduate School of Science and Technology, Niigata University, 2-8050, Ikarashi, Niigata 950-2181, Japan
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
- Sake Research Center, Asahi Sake Brewing Co., Ltd., Nagaoka, Niigata 949-5494, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Evolution of yeast hybrids by aborted meiosis. Curr Opin Genet Dev 2022; 77:101980. [PMID: 36084497 DOI: 10.1016/j.gde.2022.101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023]
Abstract
Sterile hybrids are broadly considered evolutionary dead-ends because of their faulty sexual reproduction. While sterility in obligate sexual organisms is a clear constraint in perpetuating the species, some facultative sexual microbes such as yeasts can propagate asexually and maintain genome plasticity. Moreover, incomplete meiotic pathways in yeasts represent alternative routes to the standard meiosis that generates genetic combinations in the population and fuel adaptation. Here, we review how aborting meiosis promotes genome-wide allele shuffling in sterile Saccharomyces hybrids and describe approaches to identify evolved clones in a cell population. We further discuss possible implications of this process in generating phenotypic novelty and report cases of abortive meiosis across yeast species.
Collapse
|
8
|
The evolutionary and ecological potential of yeast hybrids. Curr Opin Genet Dev 2022; 76:101958. [PMID: 35834944 DOI: 10.1016/j.gde.2022.101958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/19/2023]
Abstract
Recent findings in yeast genetics and genomics have advanced our understanding of the evolutionary potential unlocked by hybridization, especially in the genus Saccharomyces. We now have a clearer picture of the prevalence of yeast hybrids in the environment, their ecological and evolutionary history, and the genetic mechanisms driving (and constraining) their adaptation. Here, we describe how the instability of hybrid genomes determines fitness across large evolutionary scales, highlight new hybrid strain engineering techniques, and review tools for comparative hybrid genome analysis. The recent push to take yeast research back 'into the wild' has resulted in new genomic and ecological resources. These provide an arena for quantitative genetics and allow us to investigate the architecture of complex traits and mechanisms of adaptation to rapidly changing environments. The vast genetic diversity of hybrid populations can yield insights beyond those possible with isogenic lines. Hybrids offer a limitless supply of genetic variation that can be tapped for industrial strain improvement but also, combined with experimental evolution, can be used to predict population responses to future climate change - a fundamental task for biologists.
Collapse
|
9
|
Cavalieri D, Valentini B, Stefanini I. Going wild: ecology and genomics are crucial to understand yeast evolution. Curr Opin Genet Dev 2022; 75:101922. [PMID: 35691146 DOI: 10.1016/j.gde.2022.101922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Improved and more accessible genome-sequencing approaches have allowed the analysis of large sets of natural yeast isolates. As a consequence, this unprecedented level of description of yeast-genome characteristics and variations in natural environments has provided crucial insights on yeast ecology and evolution. Here, we review some of the most relevant and intriguing aspects of yeast evolution pointed out, thanks to the combination of yeast ecology and genomics, and critically examine the resulting improvement of our knowledge on this field. Only integrated approaches, taking into consideration not only the characteristics of the microbe but also those of the hosting environment, will significantly move forward the exploration of yeast diversity, ecology, and evolution.
Collapse
Affiliation(s)
| | - Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
10
|
Abstract
Breeding and domestication have generated widely exploited crops, animals and microbes. However, many Saccharomyces cerevisiae industrial strains have complex polyploid genomes and are sterile, preventing genetic improvement strategies based on breeding. Here, we present a strain improvement approach based on the budding yeasts' property to promote genetic recombination when meiosis is interrupted and cells return-to-mitotic-growth (RTG). We demonstrate that two unrelated sterile industrial strains with complex triploid and tetraploid genomes are RTG-competent and develop a visual screening for easy and high-throughput identification of recombined RTG clones based on colony phenotypes. Sequencing of the evolved clones reveal unprecedented levels of RTG-induced genome-wide recombination. We generate and extensively phenotype a RTG library and identify clones with superior biotechnological traits. Thus, we propose the RTG-framework as a fully non-GMO workflow to rapidly improve industrial yeasts that can be easily brought to the market.
Collapse
|
11
|
Mozzachiodi S, Bai FY, Baldrian P, Bell G, Boundy-Mills K, Buzzini P, Čadež N, Riffo FC, Dashko S, Dimitrov R, Fisher KJ, Gibson BR, Gouliamova D, Greig D, Heistinger L, Hittinger CT, Jecmenica M, Koufopanou V, Landry CR, Mašínová T, Naumova ES, Opulente D, Peña JJ, Petrovič U, Tsai IJ, Turchetti B, Villarreal P, Yurkov A, Liti G, Boynton P. Yeasts from temperate forests. Yeast 2022; 39:4-24. [PMID: 35146791 DOI: 10.1002/yea.3699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Yeasts are ubiquitous in temperate forests. While this broad habitat is well-defined, the yeasts inhabiting it and their life cycles, niches, and contributions to ecosystem functioning are less understood. Yeasts are present on nearly all sampled substrates in temperate forests worldwide. They associate with soils, macroorganisms, and other habitats, and no doubt contribute to broader ecosystem-wide processes. Researchers have gathered information leading to hypotheses about yeasts' niches and their life cycles based on physiological observations in the laboratory as well as genomic analyses, but the challenge remains to test these hypotheses in the forests themselves. Here we summarize the habitat and global patterns of yeast diversity, give some information on a handful of well-studied temperate forest yeast genera, discuss the various strategies to isolate forest yeasts, and explain temperate forest yeasts' contributions to biotechnology. We close with a summary of the many future directions and outstanding questions facing researchers in temperate forest yeast ecology. Yeasts present an exciting opportunity to better understand the hidden world of microbial ecology in this threatened and global habitat.
Collapse
Affiliation(s)
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Graham Bell
- Biology Department and Redpath Museum, McGill University, Québec, Canada
| | - Kyria Boundy-Mills
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Pietro Buzzini
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Neža Čadež
- Biotechnical Faculty, Food Science and Technology Department, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco Cubillos Riffo
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Sofia Dashko
- DSM Food Specialties, Center for Food Innovation, AX, Delft, The Netherlands
| | - Roumen Dimitrov
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kaitlin J Fisher
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian R Gibson
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Chair of Brewing and Beverage Technology, Berlin, Germany
| | - Dilnora Gouliamova
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Duncan Greig
- Centre for Life's Origins and Evolution, University College London, London, UK
| | - Lina Heistinger
- ETH Zurich, Department of Biology, Institute of Biochemistry, Switzerland
| | - Chris Todd Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian R Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada.,Institut de Biologie Intégrative et des Systèmes, Université Laval, Canada.,PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Canada.,Centre de Recherche sur les Données Massives, Université Laval, Canada.,Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Canada
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha 4, Czech Republic
| | - Elena S Naumova
- State Research Institute of Genetics and Selection of Industrial Microorganisms of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Dana Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | - Uroš Petrovič
- Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.,Jožef Stefan Institute, Department of Molecular and Biomedical Sciences, Ljubljana, Slovenia
| | | | - Benedetta Turchetti
- Department of Agriculture, Food and Environmental Sciences & Industrial Yeasts Collection DBVPG, University of Perugia, Italy
| | - Pablo Villarreal
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Andrey Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Gianni Liti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | |
Collapse
|
12
|
Bendixsen DP, Frazão JG, Stelkens R. Saccharomyces yeast hybrids on the rise. Yeast 2021; 39:40-54. [PMID: 34907582 DOI: 10.1002/yea.3684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Saccharomyces hybrid yeasts are receiving increasing attention as a powerful model system to understand adaptation to environmental stress and speciation mechanisms, using experimental evolution and omics techniques. We compiled all genomic resources available from public repositories of the eight recognized Saccharomyces species and their interspecific hybrids. We present the newest numbers on genomes sequenced, assemblies, annotations, and sequencing runs, and an updated species phylogeny using orthogroup inference. While genomic resources are highly skewed towards Saccharomyces cerevisiae, there is a noticeable movement to use wild, recently discovered yeast species in recent years. To illustrate the degree and potential causes of reproductive isolation, we reanalyzed published data on hybrid spore viabilities across the entire genus and tested for the role of genetic, geographic, and ecological divergence within and between species (28 cross types and 371 independent crosses). Hybrid viability generally decreased with parental genetic distance likely due to antirecombination and negative epistasis, but notable exceptions emphasize the importance of strain-specific structural variation and ploidy differences. Surprisingly, the viability of crosses within species varied widely, from near reproductive isolation to near-perfect viability. Geographic and ecological origins of the parents predicted cross viability to an extent, but with certain caveats. Finally, we highlight publication trends in the field and point out areas of special interest, where hybrid yeasts are particularly promising for innovation through research and development, and experimental evolution and fermentation.
Collapse
Affiliation(s)
- Devin P Bendixsen
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - João G Frazão
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|