1
|
Caliseki M, Schaffitzel C, Kabasakal BV. The versatile role of YidC in membrane protein biosynthesis and quality control. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119956. [PMID: 40221051 DOI: 10.1016/j.bbamcr.2025.119956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Membrane proteins are essential for bacterial survival, facilitating vital processes such as energy production, nutrient transport, and cell wall synthesis. YidC is a key player in membrane protein biogenesis, acting as both an insertase and a chaperone to ensure proper protein folding and integration into the lipid bilayer. Its conserved structure and adaptability enable it to mediate co-translational and post-translational protein insertion into the membrane through both Sec-dependent and Sec-independent pathways. In addition to facilitating protein insertion, YidC collaborates with FtsH in protein quality control, preventing the accumulation of misfolded proteins that could impair cellular function. This important relationship between YidC and FtsH is poorly understood, and there is a need for further investigation into their collaboration. Understanding how YidC and FtsH coordinate their roles could provide valuable insights into the links between bacterial membrane protein biogenesis and quality control pathways. Moreover, given its central functions, YidC represents a potential target for antimicrobial development. Small molecules disrupting its function in protein folding and insertion, hold promise. However, achieving bacterial specificity without impacting eukaryotic homologs remains a challenge. Here, we review our current understanding of YidC's structure, molecular function in membrane protein biogenesis and quality control, known interactions and its therapeutic potential.
Collapse
Affiliation(s)
- Mehmet Caliseki
- Turkish Accelerator and Radiation Laboratory, Ankara 06830, Türkiye; Department of Molecular Biology, Genetics and Bioengineering, Graduate School of Engineering and Natural Sciences, Sabanci University, Istanbul 34420, Türkiye; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK
| | | | - Burak Veli Kabasakal
- Turkish Accelerator and Radiation Laboratory, Ankara 06830, Türkiye; School of Biochemistry, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
| |
Collapse
|
2
|
Pfaendner C, Korn V, Gogoi P, Unger B, Pluhackova K. ART-SM: Boosting Fragment-Based Backmapping by Machine Learning. J Chem Theory Comput 2025; 21:4151-4166. [PMID: 40184371 DOI: 10.1021/acs.jctc.5c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
In sequential multiscale molecular dynamics simulations, which advantageously combine the increased sampling and dynamics at coarse-grained resolution with the higher accuracy of atomistic simulations, the resolution is altered over time. While coarse-graining is straightforward once the mapping between atomistic and coarse-grained resolution is defined, reintroducing the atomistic details is still a nontrivial process called backmapping. Here, we present ART-SM, a fragment-based backmapping framework that learns from atomistic simulation data to seamlessly switch from coarse-grained to atomistic resolution. ART-SM requires minimal user input and goes beyond state-of-the-art fragment-based approaches by selecting from multiple conformations per fragment via machine learning to simultaneously reflect the coarse-grained structure and the Boltzmann distribution. Additionally, we introduce a novel refinement step to connect individual fragments by optimizing specific bonds, angles, and dihedral angles in the backmapping process. We demonstrate that our algorithm accurately restores the atomistic bond length, angle, and dihedral angle distributions for various small and linear molecules from Martini coarse-grained beads and that the resulting high-resolution structures are representative of the input coarse-grained conformations. Moreover, the reconstruction of the TIP3P water model is fast and robust, and we demonstrate that ART-SM can be applied to larger linear molecules as well. To illustrate the efficiency of the local and autoregressive approach of ART-SM, we simulated a large realistic system containing the surfactants TAPB and SDS in solution using the Martini3 force field. The self-assembled micelles of various shapes were backmapped with ART-SM after training on only short atomistic simulations of a single water-solvated SDS or TAPB molecule. Together, these results indicate the potential for the method to be extended to more complex molecules such as lipids, proteins, macromolecules, and materials in the future.
Collapse
Affiliation(s)
- Christian Pfaendner
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany
- Artificial Intelligence Software Academy, University of Stuttgart, 70569 Stuttgart, Germany
| | - Viktoria Korn
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany
| | - Pritom Gogoi
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany
| | - Benjamin Unger
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Universitätsstr. 32, 70569 Stuttgart, Germany
| |
Collapse
|
3
|
Korn V, Pluhackova K. Vastly different energy landscapes of the membrane insertions of monomeric gasdermin D and A3. Commun Chem 2025; 8:38. [PMID: 39915622 PMCID: PMC11802827 DOI: 10.1038/s42004-024-01400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/19/2024] [Indexed: 02/09/2025] Open
Abstract
Gasdermin D and gasdermin A3 belong to the same family of pore-forming proteins and executors of pyroptosis, a form of programmed cell death. To unveil the process of their pore formation, we examine the energy landscapes upon insertion of the gasdermin D and A3 monomers into a lipid bilayer by extensive atomistic molecular dynamics simulations. We reveal a lower free energy barrier of membrane insertion for gasdermin D than for gasdermin A3 and a preference of gasdermin D for the membrane-inserted and of gasdermin A3 for the membrane-adsorbed state, suggesting that gasdermin D first inserts and then oligomerizes while gasdermin A3 oligomerizes and then inserts. Gasdermin D stabilizes itself in the membrane by forming more salt bridges and pulling phosphatidylethanolamine lipids and more water into the membrane. Gasdermin-lipid interactions support the pore formation. Our findings suggest that both the gasdermin species and the lipid composition modulate gasdermin pore formation.
Collapse
Affiliation(s)
- Viktoria Korn
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Stuttgart, Germany
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
4
|
Zhang Q, Rosa RSL, Ray A, Durlet K, Dorrazehi GM, Bernardi RC, Alsteens D. Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy. Nat Commun 2025; 16:6. [PMID: 39747000 PMCID: PMC11696146 DOI: 10.1038/s41467-024-55358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP's interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Raissa S L Rosa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Kimberley Durlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Gol Mohammad Dorrazehi
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Rafael C Bernardi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
- Department of Physics, Auburn University, Auburn, AL, USA.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
5
|
Polasa A, Badiee SA, Moradi M. Deciphering the Interdomain Coupling in a Gram-Negative Bacterial Membrane Insertase. J Phys Chem B 2024; 128:9734-9744. [PMID: 39329451 PMCID: PMC11472308 DOI: 10.1021/acs.jpcb.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
YidC is a membrane protein that plays an important role in inserting newly generated proteins into lipid membranes. The Sec-dependent complex is responsible for inserting proteins into the lipid bilayer in bacteria. YidC facilitates the insertion and folding of membrane proteins, both in conjunction with the Sec complex and independently. Additionally, YidC acts as a chaperone during the folding of proteins. Multiple investigations have conclusively shown that Gram-positive bacterial YidC has Sec-independent insertion mechanisms. Through the use of microsecond-level all-atom molecular dynamics (MD) simulations, we have carried out an in-depth investigation of the YidC protein originating from Gram-negative bacteria. This research sheds light on the significance of multiple domains of the YidC structure at a detailed molecular level by utilizing equilibrium MD simulations. Specifically, multiple models of YidC embedded in the lipid bilayer were constructed to characterize the critical role of the C2 loop and the periplasmic domain (PD) present in Gram-negative YidC, which is absent in its Gram-positive counterpart. Based on our results, the C2 loop plays a role in the overall stabilization of the protein, most notably in the transmembrane (TM) region, and it also has an allosteric influence on the PD region. We have found critical inter- and intradomain interactions that contribute to the stability of the protein and its function. Finally, our study provides a hypothetical Sec-independent insertion mechanism for Gram-negative bacterial YidC.
Collapse
Affiliation(s)
- Adithya Polasa
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Shadi A. Badiee
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and
Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
6
|
Yang H, Zhou D, Zhou Z, Duan M, Yu H. Mechanistic Insight into the Mechanical Unfolding of the Integral Membrane Diacylglycerol Kinase. JACS AU 2024; 4:1422-1435. [PMID: 38665647 PMCID: PMC11040704 DOI: 10.1021/jacsau.3c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024]
Abstract
The essential forces stabilizing membrane proteins and governing their folding and unfolding are difficult to decipher. Single-molecule atomic force spectroscopy mechanically unfolds individual membrane proteins and quantifies their dynamics and energetics. However, it remains challenging to structurally assign unfolding intermediates precisely and to deduce dominant interactions between specific residues that facilitate either the localized stabilization of these intermediates or the global assembly of membrane proteins. Here, we performed force spectroscopy experiments and multiscale molecular dynamics simulations to study the unfolding pathway of diacylglycerol kinase (DGK), a small trimeric multispan transmembrane enzyme. The remarkable agreement between experiments and simulations allowed precise structural assignment and interaction analysis of unfolding intermediates, bypassing existing limitations on structural mapping, and thus provided mechanistic explanations for the formation of these states. DGK unfolding was found to proceed with structural segments varying in size that do not correlate with its secondary structure. We identified intermolecular side-chain packing interactions as one of the major contributions to the stability of unfolding intermediates. Mutagenesis creating packing defects induced a dramatic decrease in the mechano-stability of corresponding intermediates and also in the thermo-stability of DGK trimer, in good agreement with predictions from simulations. Hence, the molecular determinants of the mechano- and thermo-stability of a membrane protein can be identified at residue resolution. The accurate structural assignment established and microscopic mechanism revealed in this work may substantially expand the scope of single-molecule studies of membrane proteins.
Collapse
Affiliation(s)
- Huiying Yang
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Daihong Zhou
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Zhangyi Zhou
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Mojie Duan
- Innovation
Academy for Precision Measurement Science and Technology, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Hao Yu
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Blaimschein N, Parameswaran H, Nagler G, Manioglu S, Helenius J, Ardelean C, Kuhn A, Guan L, Müller DJ. The insertase YidC chaperones the polytopic membrane protein MelB inserting and folding simultaneously from both termini. Structure 2023; 31:1419-1430.e5. [PMID: 37708891 PMCID: PMC10840855 DOI: 10.1016/j.str.2023.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
The insertion and folding of proteins into membranes is crucial for cell viability. Yet, the detailed contributions of insertases remain elusive. Here, we monitor how the insertase YidC guides the folding of the polytopic melibiose permease MelB into membranes. In vivo experiments using conditionally depleted E. coli strains show that MelB can insert in the absence of SecYEG if YidC resides in the cytoplasmic membrane. In vitro single-molecule force spectroscopy reveals that the MelB substrate itself forms two folding cores from which structural segments insert stepwise into the membrane. However, misfolding dominates, particularly in structural regions that interface the pseudo-symmetric α-helical domains of MelB. Here, YidC takes an important role in accelerating and chaperoning the stepwise insertion and folding process of both MelB folding cores. Our findings reveal a great flexibility of the chaperoning and insertase activity of YidC in the multifaceted folding processes of complex polytopic membrane proteins.
Collapse
Affiliation(s)
- Nina Blaimschein
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Hariharan Parameswaran
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Gisela Nagler
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland
| | | | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, 70599 Stuttgart, Baden-Württemberg, Germany
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 4058 Basel, Basel-Stadt, Switzerland.
| |
Collapse
|
8
|
Pleiner T, Hazu M, Pinton Tomaleri G, Nguyen VN, Januszyk K, Voorhees RM. A selectivity filter in the ER membrane protein complex limits protein misinsertion at the ER. J Cell Biol 2023; 222:e202212007. [PMID: 37199759 PMCID: PMC10200711 DOI: 10.1083/jcb.202212007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/31/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Tail-anchored (TA) proteins play essential roles in mammalian cells, and their accurate localization is critical for proteostasis. Biophysical similarities lead to mistargeting of mitochondrial TA proteins to the ER, where they are delivered to the insertase, the ER membrane protein complex (EMC). Leveraging an improved structural model of the human EMC, we used mutagenesis and site-specific crosslinking to map the path of a TA protein from its cytosolic capture by methionine-rich loops to its membrane insertion through a hydrophilic vestibule. Positively charged residues at the entrance to the vestibule function as a selectivity filter that uses charge-repulsion to reject mitochondrial TA proteins. Similarly, this selectivity filter retains the positively charged soluble domains of multipass substrates in the cytosol, thereby ensuring they adopt the correct topology and enforcing the "positive-inside" rule. Substrate discrimination by the EMC provides a biochemical explanation for one role of charge in TA protein sorting and protects compartment integrity by limiting protein misinsertion.
Collapse
Affiliation(s)
- Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Vy N. Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt Januszyk
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rebecca M. Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Dalbey RE, Kaushik S, Kuhn A. YidC as a potential antibiotic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119403. [PMID: 36427551 DOI: 10.1016/j.bbamcr.2022.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022]
Abstract
The membrane insertase YidC, is an essential bacterial component and functions in the folding and insertion of many membrane proteins during their biogenesis. It is a multispanning protein in the inner (cytoplasmic) membrane of Escherichia coli that binds its substrates in the "greasy slide" through hydrophobic interaction. The hydrophilic part of the substrate transiently localizes in the groove of YidC before it is translocated into the periplasm. The groove, which is flanked by the greasy slide, is within the center of the membrane, and provides a promising target for inhibitors that would block the insertase function of YidC. In addition, since the greasy slide is available for the binding of various substrates, it could also provide a binding site for inhibitory molecules. In this review we discuss in detail the structure and the mechanism of how YidC interacts not only with its substrates, but also with its partner proteins, the SecYEG translocase and the SRP signal recognition particle. Insight into the substrate binding to the YidC catalytic groove is presented. We wind up the review with the idea that the hydrophilic groove would be a potential site for drug binding and the feasibility of YidC-targeted drug development.
Collapse
Affiliation(s)
- Ross E Dalbey
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America.
| | - Sharbani Kaushik
- Dept. of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States of America
| | - Andreas Kuhn
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany.
| |
Collapse
|
11
|
Mater V, Eisner S, Seidel C, Schneider D. The peripherally membrane-attached protein MbFACL6 of Mycobacterium tuberculosis activates a broad spectrum of substrates. J Mol Biol 2022; 434:167842. [PMID: 36179886 DOI: 10.1016/j.jmb.2022.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
The infectious disease tuberculosis is one of the fifteen most common causes of death worldwide (according to the WHO). About every fourth person is infected with the main causative agent Mycobacterium tuberculosis (Mb). A characteristic of the pathogen is its entrance into a dormant state in which a phenotypic antibiotic resistance is achieved. To target resistant strains, novel dormancy-specific targets are very promising. Such a possible target is the Mb "fatty acid-CoA ligase 6" (MbFACL6), which activates fatty acids and thereby modulates the accumulation of triacylglycerol-containing lipid droplets that are used by Mb as an energy source during dormancy. We investigated the membrane association of MbFACL6 in E. coli and its specific activity towards different substrates after establishing a novel MbFACL6 activity assay. Despite a high homology to the mammalian family of fatty acid transport proteins, which are typically transmembrane proteins, our results indicate that MbFACL6 is a peripheral membrane-attached protein. Furthermore, MbFACL6 tolerates a broad spectrum of substrates including saturated and unsaturated fatty acids (C12-C20), some cholic acid derivatives, and even synthetic fatty acids, such as 9(E)-nitrooleicacid. Therefore, the substrate selectivity of MbFACL6 appears to be much broader than previously assumed.
Collapse
Affiliation(s)
- Veronika Mater
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Sabine Eisner
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Cornelia Seidel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| |
Collapse
|
12
|
Korn V, Pluhackova K. Not sorcery after all: Roles of multiple charged residues in membrane insertion of gasdermin-A3. Front Cell Dev Biol 2022; 10:958957. [PMID: 36120563 PMCID: PMC9479151 DOI: 10.3389/fcell.2022.958957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins execute programmatory cell death, known as pyroptosis, by forming medium-sized membrane pores. Recently, the molecular structure of those pores as well as the diversity in their shape and size have been revealed by cryoTEM and atomic force microscopy, respectively. Even though a growth of smaller to larger oligomers and reshaping from slits to rings could be documented, the initiation of the gasdermin pore formation remains a mystery. In one hypothesis, gasdermin monomers insert into membranes before associating into oligomeric pores. In the other hypothesis, gasdermin oligomers preassemble on the membrane surface prior to membrane insertion. Here, by studying the behavior of monomeric membrane-inserted gasdermin-A3 (GSDMA3), we unveil that a monomeric gasdermin prefers the membrane-adsorbed over the membrane-inserted state. Our results thus support the hypothesis of oligomers preassembling on the membrane surface before membrane penetration. At the same time, our simulations of small membrane-inserted arcs of GSDMA3 suggest that the inserting oligomer can be small and does not have to comprise a full ring of approximately 26-30 subunits. Moreover, our simulations have revealed an astonishingly large impact of salt-bridge formation and protein surroundings on the transmembrane passage of charged residues, reducing the energetic cost by up to 53% as compared to their free forms. The here observed free energy barrier of mere 5.6 kcal/mol for the membrane insertion of monomeric GSDMA3 explains the surprising ability of gasdermins to spontaneously self-insert into cellular membranes.
Collapse
Affiliation(s)
| | - Kristyna Pluhackova
- Stuttgart Center for Simulation Science, Cluster of Excellence EXC 2075, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Polasa A, Hettige J, Immadisetty K, Moradi M. An investigation of the YidC-mediated membrane insertion of Pf3 coat protein using molecular dynamics simulations. Front Mol Biosci 2022; 9:954262. [PMID: 36046607 PMCID: PMC9421054 DOI: 10.3389/fmolb.2022.954262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
YidC is a membrane protein that facilitates the insertion of newly synthesized proteins into lipid membranes. Through YidC, proteins are inserted into the lipid bilayer via the SecYEG-dependent complex. Additionally, YidC functions as a chaperone in protein folding processes. Several studies have provided evidence of its independent insertion mechanism. However, the mechanistic details of the YidC SecY-independent protein insertion mechanism remain elusive at the molecular level. This study elucidates the insertion mechanism of YidC at an atomic level through a combination of equilibrium and non-equilibrium molecular dynamics (MD) simulations. Different docking models of YidC-Pf3 in the lipid bilayer were built in this study to better understand the insertion mechanism. To conduct a complete investigation of the conformational difference between the two docking models developed, we used classical molecular dynamics simulations supplemented with a non-equilibrium technique. Our findings indicate that the YidC transmembrane (TM) groove is essential for this high-affinity interaction and that the hydrophilic nature of the YidC groove plays an important role in protein transport across the cytoplasmic membrane bilayer to the periplasmic side. At different stages of the insertion process, conformational changes in YidC's TM domain and membrane core have a mechanistic effect on the Pf3 coat protein. Furthermore, during the insertion phase, the hydration and dehydration of the YidC's hydrophilic groove are critical. These results demonstrate that Pf3 coat protein interactions with the membrane and YidC vary in different conformational states during the insertion process. Finally, this extensive study directly confirms that YidC functions as an independent insertase.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
14
|
Mercier E, Wang X, Bögeholz LAK, Wintermeyer W, Rodnina MV. Cotranslational Biogenesis of Membrane Proteins in Bacteria. Front Mol Biosci 2022; 9:871121. [PMID: 35573737 PMCID: PMC9099147 DOI: 10.3389/fmolb.2022.871121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
Nascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY. The growing nascent peptide is then inserted into the phospholipid bilayer at the translocon, an inner-membrane protein complex consisting of SecY, SecE, and SecG. Folding of membrane proteins requires that transmembrane helices (TMs) attain their correct topology, the soluble domains are inserted at the correct (cytoplasmic or periplasmic) side of the membrane, and – for polytopic membrane proteins – the TMs find their interaction partner TMs in the phospholipid bilayer. This review describes the recent progress in understanding how growing nascent peptides are processed and how inner-membrane proteins are targeted to the translocon and find their correct orientation at the membrane, with the focus on biophysical approaches revealing the dynamics of the process. We describe how spontaneous fluctuations of the translocon allow diffusion of TMs into the phospholipid bilayer and argue that the ribosome orchestrates cotranslational targeting not only by providing the binding platform for the RPBs or the translocon, but also by helping the nascent chains to find their correct orientation in the membrane. Finally, we present the auxiliary role of YidC as a chaperone for inner-membrane proteins. We show how biophysical approaches provide new insights into the dynamics of membrane protein biogenesis and raise new questions as to how translation modulates protein folding.
Collapse
|
15
|
Chen Y, Sotomayor M, Capponi S, Hariharan B, Sahu ID, Haase M, Lorigan GA, Kuhn A, White SH, Dalbey RE. A hydrophilic microenvironment in the substrate-translocating groove of the YidC membrane insertase is essential for enzyme function. J Biol Chem 2022; 298:101690. [PMID: 35148995 PMCID: PMC8920935 DOI: 10.1016/j.jbc.2022.101690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022] Open
Abstract
The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism. Here, we provide data suggesting that the positively charged residue is important not for its charge but for increasing the hydrophilicity of the groove. We found that the positively charged residue is dispensable for Escherichia coli YidC function when an adjacent residue at position 517 was hydrophilic or aromatic, but was essential when the adjacent residue was apolar. Additionally, solvent accessibility studies support the idea that the conserved positively charged residue functions to keep the top and middle of the groove sufficiently hydrated. Moreover, we demonstrate that both the E. coli and Streptococcus mutans YidC homologs are functional when the strictly conserved arginine is replaced with a negatively charged residue, provided proper stabilization from neighboring residues. These combined results show that the positively charged residue functions to maintain a hydrophilic microenvironment in the groove necessary for the insertase activity, rather than to form electrostatic interactions with the substrates.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Sara Capponi
- Department of Industrial and Applied Genomics, IBM AI and Cognitive Software Organization, IBM Almaden Research Center, San Jose, California, USA; NSF Center for Cellular Construction, University of California in San Francisco, San Francisco, California, USA
| | | | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA; Natural Science Division, Campbellsville University, Campbellsville, Kentucky, USA
| | - Maximilian Haase
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Stuttgart, Germany
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Stuttgart, Germany
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|