1
|
Tan S, Zhu F, Li Y, Wen X, Yang S, Liao Z, Duan X, Xiao D, Zhang Y. HELQ upregulates PARP1 to drive platinum resistance and predict therapeutic response in ovarian cancer. Transl Oncol 2025; 57:102416. [PMID: 40381483 DOI: 10.1016/j.tranon.2025.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/27/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
POLQ-like helicase (HELQ), an evolutionarily conserved 3'-5' DNA helicase, is markedly overexpressed in platinum-resistant ovarian cancer (OC), which is correlated with a poor prognosis. However, the mechanisms linking HELQ with resistance to platinum-based chemotherapy remain unkonwn. Our study presents both in vitro and in vivo evidence that elevated HELQ expression is linked to increased chemoresistance in OC models, with reduced HELQ levels enhancing their sensitivity to platinum agents. The expression of γH2AX, RPA1 and 53BP1 determined by immunofluorescence and western blot indicated that HELQ could promote platinum-induced DNA damage repair. HELQ was found to promote OC platinum resistance by regulating the expression of poly (ADP-ribose) polymerase 1(PARP1), which could be reversed by PARP1 downregulation. Furthermore, in vitro experiments showed that HELQ overexpression sensitizes OC cells to PARP inhibitors (PARPi). Immunohistochemical analysis indicates that diminished HELQ expression in tumor tissues correlates with disease progression in patients with first-line maintenance therapy with PARPi, whereby higher expression levels predict improved progression-free survival. Notably, we found a positive correlation between PARP1 and HELQ expression. In conclusion, HELQupregulats PARP1 to promote platinum resistance in OC and warrants consideration as an emerging biomarker for monitoring therapeutic responses to chemotherapy and PARPi treatment in ovarian cancer.
Collapse
Affiliation(s)
- Shuran Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Yi Li
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Xinxin Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Zexi Liao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Xuerui Duan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China
| | - Di Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, PR China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, , 410008, PR China; Gynecological Oncology Research and Engineering Center of Hunan Province, XiangyaHospital, Changsha, Hunan, , 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
2
|
Verschuren J, van Schendel R, van Bostelen I, Verkennis AEE, Knipscheer P, Tijsterman M. FAN1-mediated translesion synthesis and POLQ/HELQ-mediated end joining generate interstrand crosslink-induced mutations. Nat Commun 2025; 16:2495. [PMID: 40082407 PMCID: PMC11906846 DOI: 10.1038/s41467-025-57764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
To counteract the damaging effects of DNA interstrand crosslinks (ICLs), cells have evolved various specialized ICL repair pathways. However, how ICL repair impacts genetic integrity remains incompletely understood. Here, we determined the mutagenic consequences of psoralen ICL repair in the animal model C. elegans and identify two mutagenic repair mechanisms: (i) translesion synthesis through POLH and REV1/3-mediated bypass, leading to single nucleotide polymorphisms (SNVs), and (ii) end joining via POLQ or HELQ action resulting in deletions. While we found no role for the Fanconi anemia genes FANCD2 and FANCI, disruption of TRAIP, which triggers unloading of the CMG helicase at sites of blocked replication, led to a strikingly altered repair profile, suggesting a role for DNA replication in the etiology of ICL-induced deletions. TRAIP deficiency did not affect SNV formation; instead, we found these SNVs to depend on the functionality of the Fanconi anemia-associated nuclease FAN1.
Collapse
Affiliation(s)
- Jip Verschuren
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ivo van Bostelen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Alex E E Verkennis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Puck Knipscheer
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Alli N, Lou-Hing A, Bolt EL, He L. POLD3 as Controller of Replicative DNA Repair. Int J Mol Sci 2024; 25:12417. [PMID: 39596481 PMCID: PMC11595029 DOI: 10.3390/ijms252212417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple modes of DNA repair need DNA synthesis by DNA polymerase enzymes. The eukaryotic B-family DNA polymerase complexes delta (Polδ) and zeta (Polζ) help to repair DNA strand breaks when primed by homologous recombination or single-strand DNA annealing. DNA synthesis by Polδ and Polζ is mutagenic, but is needed for the survival of cells in the presence of DNA strand breaks. The POLD3 subunit of Polδ and Polζ is at the heart of DNA repair by recombination, by modulating polymerase functions and interacting with other DNA repair proteins. We provide the background to POLD3 discovery, investigate its structure, as well as function in cells. We highlight unexplored structural aspects of POLD3 and new biochemical data that will help to understand the pivotal role of POLD3 in DNA repair and mutagenesis in eukaryotes, and its impact on human health.
Collapse
Affiliation(s)
- Nabilah Alli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Liu He
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
4
|
Sfeir A, Tijsterman M, McVey M. Microhomology-Mediated End-Joining Chronicles: Tracing the Evolutionary Footprints of Genome Protection. Annu Rev Cell Dev Biol 2024; 40:195-218. [PMID: 38857538 DOI: 10.1146/annurev-cellbio-111822-014426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.
Collapse
Affiliation(s)
- Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA;
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center; Institute of Biology Leiden, Leiden University, Leiden, The Netherlands;
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, Massachusetts, USA;
| |
Collapse
|
5
|
de Pater S, Kamoen L, van Schendel R, Hooykaas PJJ, Tijsterman M. Profiling Cas9- and Cas12a-induced mutagenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2706-2717. [PMID: 39052360 DOI: 10.1111/tpj.16943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.
Collapse
Affiliation(s)
- Sylvia de Pater
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Lycka Kamoen
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands
| | - Paul J J Hooykaas
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
| | - Marcel Tijsterman
- Department of Plant Sciences, Institute of Biology, Leiden University, Leiden, BE, 2333, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, RC, 2300, the Netherlands
| |
Collapse
|
6
|
Zhao Y, Hou K, Liu Y, Na Y, Li C, Luo H, Wang H. Helicase HELQ: Molecular Characters Fit for DSB Repair Function. Int J Mol Sci 2024; 25:8634. [PMID: 39201320 PMCID: PMC11355030 DOI: 10.3390/ijms25168634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The protein sequence and spatial structure of DNA helicase HELQ are highly conserved, spanning from archaea to humans. Aside from its helicase activity, which is based on DNA binding and translocation, it has also been recently reconfirmed that human HELQ possesses DNA-strand-annealing activity, similar to that of the archaeal HELQ homolog StoHjm. These biochemical functions play an important role in regulating various double-strand break (DSB) repair pathways, as well as multiple steps in different DSB repair processes. HELQ primarily facilitates repair in end-resection-dependent DSB repair pathways, such as homologous recombination (HR), single-strand annealing (SSA), microhomology-mediated end joining (MMEJ), as well as the sub-pathways' synthesis-dependent strand annealing (SDSA) and break-induced replication (BIR) within HR. The biochemical functions of HELQ are significant in end resection and its downstream pathways, such as strand invasion, DNA synthesis, and gene conversion. Different biochemical activities are required to support DSB repair at various stages. This review focuses on the functional studies of the biochemical roles of HELQ during different stages of diverse DSB repair pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
7
|
He X, Brakebusch C. Regulation of Precise DNA Repair by Nuclear Actin Polymerization: A Chance for Improving Gene Therapy? Cells 2024; 13:1093. [PMID: 38994946 PMCID: PMC11240418 DOI: 10.3390/cells13131093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.
Collapse
Affiliation(s)
| | - Cord Brakebusch
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark;
| |
Collapse
|
8
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Tang N, Wen W, Liu Z, Xiong X, Wu Y. HELQ as a DNA helicase: Its novel role in normal cell function and tumorigenesis (Review). Oncol Rep 2023; 50:220. [PMID: 37921071 PMCID: PMC10652244 DOI: 10.3892/or.2023.8657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 11/04/2023] Open
Abstract
Helicase POLQ‑like (HELQ or Hel308), is a highly conserved, 3'‑5' superfamily II DNA helicase that contributes to diverse DNA processes, including DNA repair, unwinding, and strand annealing. HELQ deficiency leads to subfertility, due to its critical role in germ cell stability. In addition, the abnormal expression of HELQ has been observed in multiple tumors and a number of molecular pathways, including the nucleotide excision repair, checkpoint kinase 1‑DNA repair protein RAD51 homolog 1 and ATM/ATR pathways, have been shown to be involved in HELQ. In the present review, the structure and characteristics of HELQ, as well as its major functions in DNA processing, were described. Molecular mechanisms involving HELQ in the context of tumorigenesis were also described. It was deduced that HELQ biology warrants investigation, and that its critical roles in the regulation of various DNA processes and participation in tumorigenesis are clinically relevant.
Collapse
Affiliation(s)
- Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
10
|
Traband EL, Hammerlund SR, Shameem M, Narayan A, Ramana S, Tella A, Sobeck A, Shima N. Mitotic DNA Synthesis in Untransformed Human Cells Preserves Common Fragile Site Stability via a FANCD2-Driven Mechanism That Requires HELQ. J Mol Biol 2023; 435:168294. [PMID: 37777152 PMCID: PMC10839910 DOI: 10.1016/j.jmb.2023.168294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.
Collapse
Affiliation(s)
- Emma L Traband
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sarah R Hammerlund
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Mohammad Shameem
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Ananya Narayan
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Sanjiv Ramana
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Anika Tella
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, Medical School, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Fleury H, MacEachern MK, Stiefel CM, Anand R, Sempeck C, Nebenfuehr B, Maurer-Alcalá K, Ball K, Proctor B, Belan O, Taylor E, Ortega R, Dodd B, Weatherly L, Dansoko D, Leung JW, Boulton SJ, Arnoult N. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining. Mol Cell 2023; 83:1429-1445.e8. [PMID: 37044098 PMCID: PMC10164096 DOI: 10.1016/j.molcel.2023.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Microhomology-mediated end joining (MMEJ) is an intrinsically mutagenic pathway of DNA double-strand break (DSB) repair essential for proliferation of homologous recombination (HR)-deficient tumors. Although targeting MMEJ has emerged as a powerful strategy to eliminate HR-deficient (HRD) cancers, this is limited by an incomplete understanding of the mechanism and factors required for MMEJ repair. Here, we identify the APE2 nuclease as an MMEJ effector. We show that loss of APE2 inhibits MMEJ at deprotected telomeres and at intra-chromosomal DSBs and is epistatic with Pol Theta for MMEJ activity. Mechanistically, we demonstrate that APE2 possesses intrinsic flap-cleaving activity, that its MMEJ function in cells depends on its nuclease activity, and further identify an uncharacterized domain required for its recruitment to DSBs. We conclude that this previously unappreciated role of APE2 in MMEJ contributes to the addiction of HRD cells to APE2, which could be exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Hubert Fleury
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Myles K MacEachern
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Clara M Stiefel
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Colin Sempeck
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Nebenfuehr
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kelper Maurer-Alcalá
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kerri Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce Proctor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erin Taylor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Raquel Ortega
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Dodd
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Laila Weatherly
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Djelika Dansoko
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK; Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Nausica Arnoult
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
12
|
He L, Lever R, Cubbon A, Tehseen M, Jenkins T, Nottingham AO, Horton A, Betts H, Fisher M, Hamdan SM, Soultanas P, Bolt EL. Interaction of human HelQ with DNA polymerase delta halts DNA synthesis and stimulates DNA single-strand annealing. Nucleic Acids Res 2023; 51:1740-1749. [PMID: 36718939 PMCID: PMC9976902 DOI: 10.1093/nar/gkad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
DNA strand breaks are repaired by DNA synthesis from an exposed DNA end paired with a homologous DNA template. DNA polymerase delta (Pol δ) catalyses DNA synthesis in multiple eukaryotic DNA break repair pathways but triggers genome instability unless its activity is restrained. We show that human HelQ halts DNA synthesis by isolated Pol δ and Pol δ-PCNA-RPA holoenzyme. Using novel HelQ mutant proteins we identify that inhibition of Pol δ is independent of DNA binding, and maps to a 70 amino acid intrinsically disordered region of HelQ. Pol δ and its POLD3 subunit robustly stimulated DNA single-strand annealing by HelQ, and POLD3 and HelQ interact physically via the intrinsically disordered HelQ region. This data, and inability of HelQ to inhibit DNA synthesis by the POLD1 catalytic subunit of Pol δ, reveal a mechanism for limiting DNA synthesis and promoting DNA strand annealing during human DNA break repair, which centres on POLD3.
Collapse
Affiliation(s)
- Liu He
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew Cubbon
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Muhammad Tehseen
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tabitha Jenkins
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Anya Horton
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Hannah Betts
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | | | - Samir M Hamdan
- Bioscience Program, Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, Nottingham, UK
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
14
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
15
|
Li S, Wang L, Wang Y, Zhang C, Hong Z, Han Z. The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. J Hematol Oncol 2022; 15:147. [PMID: 36253861 PMCID: PMC9578258 DOI: 10.1186/s13045-022-01360-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous cell division is a hallmark of cancer, and the underlying mechanism is tumor genomics instability. Cell cycle checkpoints are critical for enabling an orderly cell cycle and maintaining genome stability during cell division. Based on their distinct functions in cell cycle control, cell cycle checkpoints are classified into two groups: DNA damage checkpoints and DNA replication stress checkpoints. The DNA damage checkpoints (ATM-CHK2-p53) primarily monitor genetic errors and arrest cell cycle progression to facilitate DNA repair. Unfortunately, genes involved in DNA damage checkpoints are frequently mutated in human malignancies. In contrast, genes associated with DNA replication stress checkpoints (ATR-CHK1-WEE1) are rarely mutated in tumors, and cancer cells are highly dependent on these genes to prevent replication catastrophe and secure genome integrity. At present, poly (ADP-ribose) polymerase inhibitors (PARPi) operate through “synthetic lethality” mechanism with mutant DNA repair pathways genes in cancer cells. However, an increasing number of patients are acquiring PARP inhibitor resistance after prolonged treatment. Recent work suggests that a combination therapy of targeting cell cycle checkpoints and PARPs act synergistically to increase the number of DNA errors, compromise the DNA repair machinery, and disrupt the cell cycle, thereby increasing the death rate of cancer cells with DNA repair deficiency or PARP inhibitor resistance. We highlight a combinational strategy involving PARP inhibitors and inhibition of two major cell cycle checkpoint pathways, ATM-CHK2-TP53 and ATR-CHK1-WEE1. The biological functions, resistance mechanisms against PARP inhibitors, advances in preclinical research, and clinical trials are also reviewed.
Collapse
Affiliation(s)
- Shuangying Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangliang Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Changyi Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Liddiard K, Aston-Evans AN, Cleal K, Hendrickson E, Baird D. POLQ suppresses genome instability and alterations in DNA repeat tract lengths. NAR Cancer 2022; 4:zcac020. [PMID: 35774233 PMCID: PMC9241439 DOI: 10.1093/narcan/zcac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
DNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that POLQ - /- cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in POLQ - / - than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates. POLQ - /- cells emerging from crisis exhibited reduced incidence of clonal gross chromosomal abnormalities in accordance with increased genetic heterogeneity. High-throughput sequencing of telomere fusion amplicons from POLQ-deficient cells revealed significantly raised frequencies of inter-chromosomal fusions with correspondingly depreciated intra-chromosomal recombinations. Long-range interactions culminating in telomere fusions with centromere alpha-satellite repeats, as well as expansions in HSAT2 and HSAT3 satellite and contractions in ribosomal DNA repeats, were detected in POLQ - / - cells. In conjunction with the expanded telomere lengths of POLQ - /- cells, these results indicate a hitherto unrealized capacity of POLQ for regulation of repeat arrays within the genome. Our findings uncover novel considerations for the efficacy of POLQ inhibitors in clinical cancer interventions, where potential genome destabilizing consequences could drive clonal evolution and resistant disease.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alys N Aston-Evans
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
17
|
Luedeman ME, Stroik S, Feng W, Luthman AJ, Gupta GP, Ramsden DA. Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection. Nat Commun 2022; 13:4547. [PMID: 35927262 PMCID: PMC9352658 DOI: 10.1038/s41467-022-32166-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The DNA polymerase theta (Polθ)-mediated end joining (TMEJ) pathway for repair of chromosomal double strand breaks (DSBs) is essential in cells deficient in other DSB repair pathways, including hereditary breast cancers defective in homologous recombination. Strand-break activated poly(ADP) ribose polymerase 1 (PARP1) has been implicated in TMEJ, but the modest specificity of existing TMEJ assays means the extent of effect and the mechanism behind it remain unclear. We describe here a series of TMEJ assays with improved specificity and show ablation of PARP activity reduces TMEJ activity 2-4-fold. The reduction in TMEJ is attributable to a reduction in the 5' to 3' resection of DSB ends that is essential for engagement of this pathway and is compensated by increased repair by the nonhomologous-end joining pathway. This limited role for PARP activity in TMEJ helps better rationalize the combined employment of inhibitors of PARP and Polθ in cancer therapy.
Collapse
Affiliation(s)
- Megan E Luedeman
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susanna Stroik
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam J Luthman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dale A Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
19
|
Kralemann LEM, de Pater S, Shen H, Kloet SL, van Schendel R, Hooykaas PJJ, Tijsterman M. Distinct mechanisms for genomic attachment of the 5' and 3' ends of Agrobacterium T-DNA in plants. NATURE PLANTS 2022; 8:526-534. [PMID: 35534719 DOI: 10.1038/s41477-022-01147-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Agrobacterium tumefaciens, a pathogenic bacterium capable of transforming plants through horizontal gene transfer, is nowadays the preferred vector for plant genetic engineering. The vehicle for transfer is the T-strand, a single-stranded DNA molecule bound by the bacterial protein VirD2, which guides the T-DNA into the plant's nucleus where it integrates. How VirD2 is removed from T-DNA, and which mechanism acts to attach the liberated end to the plant genome is currently unknown. Here, using newly developed technology that yields hundreds of T-DNA integrations in somatic tissue of Arabidopsis thaliana, we uncover two redundant mechanisms for the genomic capture of the T-DNA 5' end. Different from capture of the 3' end of the T-DNA, which is the exclusive action of polymerase theta-mediated end joining (TMEJ), 5' attachment is accomplished either by TMEJ or by canonical non-homologous end joining (cNHEJ). We further find that TMEJ needs MRE11, whereas cNHEJ requires TDP2 to remove the 5' end-blocking protein VirD2. As a consequence, T-DNA integration is severely impaired in plants deficient for both MRE11 and TDP2 (or other cNHEJ factors). In support of MRE11 and cNHEJ specifically acting on the 5' end, we demonstrate rescue of the integration defect of double-deficient plants by using T-DNAs that are capable of forming telomeres upon 3' capture. Our study provides a mechanistic model for how Agrobacterium exploits the plant's own DNA repair machineries to transform it.
Collapse
Affiliation(s)
| | - Sylvia de Pater
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong, China
| | - Susan L Kloet
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Marcel Tijsterman
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
20
|
Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes (Basel) 2022; 13:genes13030474. [PMID: 35328029 PMCID: PMC8951532 DOI: 10.3390/genes13030474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Repair of DNA double-strand breaks by homologous recombination (HR) requires a carefully orchestrated sequence of events involving many proteins. One type of HR, synthesis-dependent strand annealing (SDSA), proceeds via the formation of a displacement loop (D-loop) when RAD51-coated single-stranded DNA invades a homologous template. The 3' end of the single-stranded DNA is extended by DNA synthesis. In SDSA, the D-loop is then disassembled prior to strand annealing. While many helicases can unwind D-loops in vitro, how their action is choreographed in vivo remains to be determined. To clarify the roles of various DNA helicases during SDSA, we used a double-strand gap repair assay to study the outcomes of homologous recombination repair in Drosophila melanogaster lacking the BLM, HELQ, and FANCM helicases. We found that the absence of any of these three helicases impairs gap repair. In addition, flies lacking both BLM and HELQ or HELQ and FANCM had more severe SDSA defects than the corresponding single mutants. In the absence of BLM, a large percentage of repair events were accompanied by flanking deletions. Strikingly, these deletions were mostly abolished in the blm helq and blm fancm double mutants. Our results suggest that the BLM, HELQ, and FANCM helicases play distinct roles during SDSA, with HELQ and FANCM acting early to promote the formation of recombination intermediates that are then processed by BLM to prevent repair by deletion-prone mechanisms.
Collapse
|
21
|
DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules 2022; 27:molecules27051540. [PMID: 35268641 PMCID: PMC8911773 DOI: 10.3390/molecules27051540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Charged-particle radiotherapy (CPRT) utilizing low and high linear energy transfer (low-/high-LET) ionizing radiation (IR) is a promising cancer treatment modality having unique physical energy deposition properties. CPRT enables focused delivery of a desired dose to the tumor, thus achieving a better tumor control and reduced normal tissue toxicity. It increases the overall radiation tolerance and the chances of survival for the patient. Further improvements in CPRT are expected from a better understanding of the mechanisms governing the biological effects of IR and their dependence on LET. There is increasing evidence that high-LET IR induces more complex and even clustered DNA double-strand breaks (DSBs) that are extremely consequential to cellular homeostasis, and which represent a considerable threat to genomic integrity. However, from the perspective of cancer management, the same DSB characteristics underpin the expected therapeutic benefit and are central to the rationale guiding current efforts for increased implementation of heavy ions (HI) in radiotherapy. Here, we review the specific cellular DNA damage responses (DDR) elicited by high-LET IR and compare them to those of low-LET IR. We emphasize differences in the forms of DSBs induced and their impact on DDR. Moreover, we analyze how the distinct initial forms of DSBs modulate the interplay between DSB repair pathways through the activation of DNA end resection. We postulate that at complex DSBs and DSB clusters, increased DNA end resection orchestrates an increased engagement of resection-dependent repair pathways. Furthermore, we summarize evidence that after exposure to high-LET IR, error-prone processes outcompete high fidelity homologous recombination (HR) through mechanisms that remain to be elucidated. Finally, we review the high-LET dependence of specific DDR-related post-translational modifications and the induction of apoptosis in cancer cells. We believe that in-depth characterization of the biological effects that are specific to high-LET IR will help to establish predictive and prognostic signatures for use in future individualized therapeutic strategies, and will enhance the prospects for the development of effective countermeasures for improved radiation protection during space travel.
Collapse
|