1
|
Mondal S, Panda A, Das TN, Rahimi FA, Kumar S, Singh P, Kaliginedi V, Maji TK. Photo-Controlled Conductance and Thermopower Switching in a Soft Photochromic Metallo-Supramolecular Polymer via EGaIn Junctions. J Am Chem Soc 2025. [PMID: 40403283 DOI: 10.1021/jacs.5c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photochromic soft metallo-supramolecular materials undergo precise, reversible transformations in structure and electronic properties under light irradiation, offering potential applications in optoelectronics, sensing, and molecular switches. Herein, we report the synthesis, characterization, and investigation of light-induced reversible morphological transformations in a Zn(II)-based photochromic coordination polymer gel (Zn-pcCPG), integrated with a dithienylethene (DTE) unit. Upon UV irradiation (λ = 365 nm), Zn-pcCPG undergoes morphological transformation from nanofibers in the gel state to spherical nanoparticles in the sol state, involving reversible photoswitching with distinct color change. To explore the charge transport properties of these metallo-supramolecular polymers, we created a EGaIn/GaOX//Zn-pcCPG//AuTS junction using the nanostructures of Zn-pcCPG on a template-stripped gold substrate (AuTS) and a soft conformal EGaIn as the top electrode. These measurements show a reversible conductance photoswitching between the "open" and "closed" states of the coordination polymer gel containing a DTE core with an on/off ratio of ≈58 at -1 V. Additionally, we have also demonstrated the on-surface photoswitching of morphology and conductance properties. Interestingly, thermoelectric property measurements reveal a HOMO-dominated charge transport for both "open" and "closed" forms of Zn-pcCPG, with a reversible thermopower switching from +163 μV/K (open form) to +21 μV/K (closed form) and vice versa. By employing UV-Vis and ultraviolet photoelectron spectroscopy measurements, we have explained the experimental conductance and thermopower trends. This is the first study to demonstrate reversible conductance and thermopower switching with morphological transitions in a photochromic coordination polymer gel (pcCPG), paving the way for advancements in CPG-based supramolecular electronics.
Collapse
Affiliation(s)
- Souvik Mondal
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Arpita Panda
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Tarak Nath Das
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunil Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pooja Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
2
|
Wang H, Ma C, Lu Q, Gu M, Jiang L, Hao Y, Hu F, Li L, Wang G, Peng S, Zhang X. Precise Tuning of Functional Group Spatial Distribution on Porphyrin Rings for Enhanced CO 2 Electroreduction Selectivity. Angew Chem Int Ed Engl 2025; 64:e202501091. [PMID: 40042186 DOI: 10.1002/anie.202501091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Molecular catalysts play a critical role in regulating the selectivity of electrocatalytic CO2 reduction reaction (CO2RR), yet the understanding of ligand function is largely restricted to modulating the electronic structure of the metal and reaction kinetics. Herein, a hydroxyl (─OH) ligand is introduced into a sterically hindered amino-porphyrin (o-TAPP) to synthesize the atropisomers porphyrin-salicylimine-Cu (o-Cu-Por-Sa) with hydrogen-bonding interactions (O─H⋯O), enabling efficient selection of CO and CH4 under dual effects. Detailed analysis shows that the ─OH of o-Cu-Por-Sa (αβαβ) forms a noncovalent hydrogen bond with carbonate, characterized by a bond length of 2.01 Å and an angle of 27.6°, and this interaction reduces the reaction energy barrier, achieving a faradaic efficiency (FE) of 84% for CH4. Moreover, the steric hindrance effect of the symmetric distribution of ─OH facilitates protonation reactions by preventing C-C coupling. In contrast, ─OH aggregated on o-Cu-Por-Sa (αααα) forms a pocket-like hydrogen bond grid, which restricts free CO2 adsorption, and the rapid dissociation of *CO also interrupts the reaction. This work highlights the pivotal role of dual effects induced by ligand atropisomerization in regulating selectivity, offering new insights for the design of efficient molecular catalysts.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Chaoqun Ma
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, School of Materials Science and Engineering University of Science and Technology Beijing, Beijing, 100083, China
| | - Qipeng Lu
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, School of Materials Science and Engineering University of Science and Technology Beijing, Beijing, 100083, China
| | - Mingzheng Gu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Ling Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Guangfeng Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaojun Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
3
|
Đorđević L, Jaynes TJ, Sai H, Barbieri M, Kupferberg JE, Sather NA, Weigand S, Stupp SI. Mechanical and Light Activation of Materials for Chemical Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418137. [PMID: 40072297 PMCID: PMC12016744 DOI: 10.1002/adma.202418137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Indexed: 04/24/2025]
Abstract
Mechanical expansion and contraction of pores within photosynthetic organisms regulate a series of processes that are necessary to manage light absorption, control gas exchange, and regulate water loss. These pores, known as stoma, allow the plant to maximize photosynthetic output depending on environmental conditions such as light intensity, humidity, and temperature by actively changing the size of the stomal opening. Despite advances in artificial photosynthetic systems, little is known about the effect of such mechanical actuation in synthetic materials where chemical reactions occur. It is reported here on a hybrid hydrogel that combines light-activated supramolecular polymers for superoxide production with thermal mechanical actuation of a covalent polymer. Superoxide production is important in organic synthesis and environmental remediation, and is a potential precursor to hydrogen peroxide liquid fuel. It is shown that the closing of pores in the hybrid hydrogel results in a substantial decrease in photocatalysis, but cycles of swollen and contracted states enhance photocatalysis. The observations motivate the development of biomimetic photosynthetic materials that integrate large scale motion and chemical reactions.
Collapse
Affiliation(s)
- Luka Đorđević
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Tyler J. Jaynes
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Hiroaki Sai
- Center for Regenerative NanomedicineNorthwestern University303 E SuperiorChicagoIL60611USA
| | - Marianna Barbieri
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 1Padova35131Italy
| | - Jacob E. Kupferberg
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
| | - Nicholas A. Sather
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
| | - Steven Weigand
- DuPont‐Northwestern‐Dow Collaborative Access Team Synchrotron Research CenterNorthwestern UniversityDND‐CATArgonneIL60439USA
| | - Samuel I. Stupp
- Center for Bio‐inspired Energy ScienceNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern University2220 Campus DriveEvanstonIL60208USA
- Department of Biomedical EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Department of MedicineNorthwestern University676 N St. Clair StreetChicagoIL60611USA
| |
Collapse
|
4
|
Gao Z, Sun J, Shi L, Yuan W, Yan H, Tian W. Precise Supramolecular Nanoarchitectonics for Simultaneous Enhanced Photoluminescence and Photocatalysis in a Co-Assembly by a Biomimetic Isolation-Conduction Strategy. Angew Chem Int Ed Engl 2025; 64:e202423174. [PMID: 39714439 DOI: 10.1002/anie.202423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions. The resultant co-assembly exhibits an enhanced monomeric green emission compared to the corresponding monocomponent self-assembly with weak red emission. Meanwhile, it also has an enhanced photocatalytic HER performance with a rate of 2.45 mmol g-1 h-1, which is 15.2 times more than the self-assembled one. On this basis, a sequential fluoric wastewater reuse system that includes real-time fluorescence detection/removal of perfluorooctanoic acids and photocatalytic HER device is constructed.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianxiang Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Yuan K, Zhang Y, Yan Z, Yun Q, Song T, Guo J, Feng J, Chen Z, Zhang X, Tang Z, Hu W, Lu T. MOF-Based Dual-Layer Pickering Emulsion: Molecular-Level Gating of Water Delivery at Water-Oil Interface for Efficient Photocatalytic Hydrogenation Using H 2O as a Hydrogen Source. Angew Chem Int Ed Engl 2025; 64:e202421341. [PMID: 39743874 DOI: 10.1002/anie.202421341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Biphasic system not only presents a promising opportunity for complex catalytic processes, but also is a grand challenge in efficient tandem reactions. As an emerging solar-to-chemical conversion, the visible-light-driven and water-donating hydrogenation combines the sustainability of photocatalysis and economic-value of hydrogenation. However, the key and challenging point is to couple water-soluble photocatalytic hydrogen evolution reaction (HER) with oil-soluble hydrogenation. Herein, we employed metal-organic frameworks (MOFs) and CdS nanorods to construct a MOF-CdS dual-layer Pickering emulsion (water in oil, W/O), which compartmented aqueous phase for photocatalytic HER and oil phase for hydrogenation. The hydrophobic MOF and hydrophilic CdS were isolated at the inner and outer layers of W/O emulsion, respectively. The molecularly regulated hydrophobicity of MOF controlled the water delivery onto CdS photocatalysts, which realized the synergistic regulation of HER and hydrogenation. In the photocatalytic hydrogenation of cinnamaldehyde, the highest yield of MOF-CdS Pickering emulsion reached 187.37 mmol ⋅ g-1 ⋅ h-1, 30 times that of the counterpart without emulsion (6.44 mmol ⋅ g-1 ⋅ h-1). Its apparent quantum yield reached 43.24 % without co-catalysts. To our knowledge, this performance is at a top-level so far. Our work realized the precise regulation of water-oil interface to effectively couple two reactions in different phases, providing new perspective for challenging tandem catalysis.
Collapse
Affiliation(s)
- Kuo Yuan
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Ying Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Qinbai Yun
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Tianqun Song
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin, 300387, P.R. China
| | - Jie Feng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zheng Chen
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Xiaotao Zhang
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Wenping Hu
- Department of Chemistry, School of Science & Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin University, Tianjin, 300072, P.R. China
| | - Tongbu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
6
|
Sahoo P. Symmetry Breaking in Supramolecular Gel Condensation. Chem Asian J 2025; 20:e202401249. [PMID: 39658892 DOI: 10.1002/asia.202401249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Supramolecular condensation during cooling cycles often transitions through multiple metastable phases before achieving a stable crystalline state. Metastability arises from various competing parameters like symmetrical arrangement, and supramolecular bonding and manifests at different temperatures. Symmetrical physical arrangements can minimize vibrational energy and stabilize the systems at higher temperatures. Further cooling promotes directional supramolecular bonding, such as charge-assisted hydrogen bonding, resulting in molecular periodicity within metastable structures. Frustration occurs when weaker van der Waals bonds form during further cooling, propagating perpendicularly to stronger one-dimensional charge-assisted hydrogen bonds and disrupting lateral periodicity in certain solvents. This makes parallel 1D fibers slidable, adding flexibility to the gel fiber. Eventually, some supramolecular systems attain thermodynamically stable crystalline states by perfectly arranging all the molecules. Throughout the process, metastability results from different symmetrical arrangements, and each rearrangement alters the supramolecular structure's symmetry, generating new physicochemical properties. Different supramolecular gels uniquely break symmetry, which can be monitored through various techniques. This perspective analyzes supramolecular thermoreversible, reverse thermal, liquid crystalline, thixotropic, and antisolvent-induced gels to illustrate spontaneous symmetry reduction processes. Reaching a suprasymmetry condensate can classify big data and be applied in unconventional analogue computing or data storage.
Collapse
Affiliation(s)
- Pathik Sahoo
- Center for Quantum Science and Technologies, Indian Institute of Technology, Mandi, India
| |
Collapse
|
7
|
Gudmundsson TA, Kotova O, Barwich S, Möbius ME, Gunnlaugsson T. Versatile, Extrudable and Luminescent Tripodal BTA-Terpyridine (tpy) Gel Cross-Linked with d- and f-Block Metal Ions. Chemistry 2025; 31:e202403919. [PMID: 39585750 DOI: 10.1002/chem.202403919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The low molecular weight gelator (LMWG) 1 based on the tripodal benzene-1,3,5-tricarboxamide (BTA) motif, capped with terpyridine (tpy) units, was shown to form supramolecular gels with versatile functionalities such as self-healing, while the cross-linking of its fibers with d- and f-block metal ions led to modified photophysical properties, the obtained gels were additionally capable of extrusion.
Collapse
Affiliation(s)
- Tómas A Gudmundsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
| | - Oxana Kotova
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
| | - Sebastian Barwich
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
- School of Physics, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
| | - Matthias E Möbius
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
- School of Physics, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Dublin, Ireland
| |
Collapse
|
8
|
Mondal S, Rahimi FA, Das TN, Nath S, Maji TK. Co II-organic 'soft' metallo-supramolecular polymer nanofibers for efficient photoreduction of CO 2. Chem Sci 2025; 16:3646-3654. [PMID: 39877814 PMCID: PMC11771370 DOI: 10.1039/d4sc08814j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO2 reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-b:4,5-b']dithiophene core with terpyridine (TPY) units via alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO2 reduction. The self-assembly of TPY-BDT with CoII ions yields a Co-TPY-BDT coordination polymer gel (CPG) with a 3D interconnected fibrous morphology, facilitating rapid electron transfer and efficient substrate diffusion. The Co-TPY-BDT CPG achieves an outstanding CO2 to CO conversion, producing 33.74 mmol g-1 of CO in 18 hours with ∼99% selectivity under visible light irradiation, using triethylamine (TEA) as a sacrificial electron donor. Remarkably, the Co-TPY-BDT CPG demonstrates significant catalytic activity even under low-concentration CO2 atmospheres (5% CO2, 95% Ar), producing 1.9 mmol g-1 of CO in 10 hours with a selectivity of 94.6%. Moreover, In situ diffuse reflectance Fourier transform (DRIFT) study, femtosecond transient absorption spectroscopy, and DFT calculations were employed to elucidate the CO2 to CO reaction mechanism.
Collapse
Affiliation(s)
- Souvik Mondal
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji
| | - Tarak Nath Das
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| |
Collapse
|
9
|
Li L, Wang B, Chen H, Wu H, Xing Y, Xia Y, Long X. Organogel Polymer Electrocatalysts for Two-Electron Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410371. [PMID: 39703152 DOI: 10.1002/smll.202410371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Polymer gels, renowned for unparalleled chemical stability and self-sustaining properties, have garnered significant attention in electrocatalysis. Notably, organic polymer gels that exhibit temperature sensitivity and incorporate suitable polar nonvolatile liquids, enhance electronic conductivity, and impart distinct morphological features, but remain largely unexplored as electrocatalysts for oxygen reduction reaction (ORR). To address this issue, an innovative strategy is proposed for synergistic modulation of the rigidity of mainchain molecular skeleton and length of alkyl sidechains, enabling the development of organogel polymers with a sol-gel temperature-sensitive phase transition that promises high selectivity and enhanced activity in electrocatalytic processes. Notably, the shortening of alkyl sidechain length can significantly affect the gelation behavior and internal microstructure of the catalyst, which modifies the electron state, ultimately impacting the catalytic activity of the gel polymer catalysts. In particular, phenyl-containing Ph-FL1 with short alkyl sidechains demonstrates outstanding 2e- ORR activity in alkaline medium, achieving a remarkable hydrogen peroxide (H2O2) selectivity of 98.6% with an impressive yield of 4.08 mol g-1 h-1. This performance surpasses most metal-free carbon-based electrocatalysts. Through theoretical calculation, the carbon atom (site-3) of C═N group is identified as potential active sites, representing a significant advancement toward designing cost-effective and efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Lili Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Binbin Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongni Chen
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Han Wu
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yali Xing
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
10
|
Du Z, Guo C, Guo M, Meng S, Yang Y, Yu Z, Zheng X, Zhang S, Chen C, Chen S. Engineering ZnIn 2S 4 with efficient charge separation and utilization for synergistic accelerate dual-function photocatalysis. J Colloid Interface Sci 2025; 677:571-582. [PMID: 39154449 DOI: 10.1016/j.jcis.2024.08.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Combining photocatalytic reduction with organic synthetic oxidation in the same photocatalytic redox system can effectively utilize photoexcited electrons and holes from solar to chemical energy. Here, we stabilized 0D Au clusters on the substrate surface of Zn vacancies modified 2D ZnIn2S4 (ZIS-V) nanosheets by chemically bonding Au-S interaction, forming surfactant functionalized Au/ZIS-V photocatalyst, which can not only synergistic accelerate the selective oxidation of phenylcarbinol to value-added products coupled with clean energy hydrogen production but also further drive photocatalytic CO2-to-CO conversion. An internal electric field of Au/ZIS-V ohmic junction and Zn vacancies synchronously promote the photoexcited charge carrier separation and transfer to optimized active sites for redox reactions. Compared with CO2 reduction in water and the pristine ZnIn2S4, the reaction thermodynamics and kinetics of CO2 reduction over the Au/ZIS-V were simultaneously improved about 11.09 and 45.51 times, respectively. Moreover, the photocatalytic redox mechanisms were also profoundly studied by 13CO2 isotope tracing tests, in situ electron paramagnetic resonance (in situ EPR), in situ X-ray photoelectron spectroscopy (in situ XPS), in situ diffuse reflection infrared Fourier transform spectroscopy (in situ DRIFTS) and density functional theory (DFT) characterizations, etc. These results demonstrate the advantages of vacancies coupled with metal clusters in the synergetic enhancement of photocatalytic redox performance and have great potential applications in a wide range of environments and energy.
Collapse
Affiliation(s)
- Zisheng Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Chan Guo
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230026, China
| | - Sugang Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230026, China.
| | - Yang Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Zhiruo Yu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Xiuzhen Zheng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Sujuan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China
| | - Cheng Chen
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, College of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
11
|
Casimiro L, Volatron F, Boivin G, Abécassis B, Alves S, Brouri D, Montero D, Guigner JM, Chamoreau LM, Gontard G, Portehault D, Li Y, Proust A, Lescouëzec R, Ducouret G, Solé-Daura A, Davidson P, Merland T, Izzet G. Multifunctional Supramolecular Gels with Strong Mechanical Properties Formed by Self-Assembly of Polyoxometalate-Based Coordination Polymers. JACS AU 2024; 4:4948-4956. [PMID: 39735907 PMCID: PMC11672139 DOI: 10.1021/jacsau.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/31/2024]
Abstract
Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration. Using spectroscopy, microscopy, X-ray scattering, and rheometry, complemented by molecular dynamics simulations, we investigated the supramolecular organization of the chains in the fibers and the resulting processes leading to gelation. Compared to previously reported systems, these gels have improved rheological features and appealing properties, such as birefringence, luminescence, and spin crossover, paving the way for their use as building blocks for multifunctional smart materials.
Collapse
Affiliation(s)
- Lorenzo Casimiro
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Florence Volatron
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Grégoire Boivin
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | | | - Sandra Alves
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Dalil Brouri
- Sorbonne
Université, CNRS, Laboratoire
de Réactivité de Surface, LRS, F-75005 Paris, France
| | - David Montero
- Sorbonne
Université, CNRS, Fédération
de Chimie et Matériaux de Paris-Centre, Paris F-75005, France
| | - Jean-Michel Guigner
- Sorbonne
Université, CNRS, Muséum
National d’Histoire Naturelle, Institut de Minéralogie,
de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| | - Lise-Marie Chamoreau
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - David Portehault
- Sorbonne
Université, CNRS, Laboratoire
de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Yanling Li
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Anna Proust
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Rodrigue Lescouëzec
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Guylaine Ducouret
- Laboratoire
Science et Ingénierie de la Matière Molle, SIMM, Sorbonne University, ESPCI Paris, CNRS, PSL University, Paris F-75005, France
| | - Albert Solé-Daura
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Patrick Davidson
- Université
Paris-Saclay, CNRS, Laboratoire de Physique
des Solides, Cedex 91405 Orsay, France
| | - Théo Merland
- Laboratoire
Science et Ingénierie de la Matière Molle, SIMM, Sorbonne University, ESPCI Paris, CNRS, PSL University, Paris F-75005, France
| | - Guillaume Izzet
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
12
|
Alam N, Mondal S, Ojha N, Sahoo S, Zeyad MT, Kumar S, Sarma D. Self-template impregnated silver nanoparticles in coordination polymer gel: photocatalytic CO 2 reduction, CO 2 fixation, and antibacterial activity. NANOSCALE 2024; 17:428-439. [PMID: 39565063 DOI: 10.1039/d4nr03254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
CO2 fixation and light-assisted conversion of CO2 in the presence of water into fuels and feedstocks are clean and sustainable techniques to alleviate the energy crisis and global climate change. In this regard, herein, a waterborne multifunctional metal-organic coordination polymer gel (Ag@GMP) was prepared from silver nitrate and guanosine 5'-monophosphate. Electron microscopy exhibits that Ag@GMP has a flower-like structure, which is composed of vertically grown sheets, and corresponding high magnification images display the presence of silver nanoparticles on the vertically grown sheets. Ag@GMP demonstrates remarkable photocatalytic performance, achieving a CO2 conversion rate of 18.6 μmol g-1 with approximately 85% selectivity towards CO at ambient temperature without using sacrificial agents. In situ diffuse reflectance infrared Fourier transform spectroscopy was employed to elucidate the proposed mechanism for photocatalytic CO2 reduction. Additionally, Ag@GMP exhibits significant catalytic activity in the fixation of CO2 with epoxides, leading to the formation of valuable chemicals under atmospheric pressure. Ag@GMP demonstrated efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. The highest zone of inhibition was observed against S. aureus MTCC 3160 (15.83 ± 1.1 mm), and for E. coli, P. aeruginosa PAO1, and B. subtilis, it was found to be 12.66 ± 0.9, 14.33 ± 0.8 and 12.8 ± 0.8 mm, respectively.
Collapse
Affiliation(s)
- Noohul Alam
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Niwesh Ojha
- Gas-solid Interaction Laboratory, Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Subham Sahoo
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| | - Sushant Kumar
- Gas-solid Interaction Laboratory, Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihar 801106, India
| | - Debajit Sarma
- Solid State and Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
13
|
Li WL, Shuai Q, Yu J. Recent Advances of Carbon Capture in Metal-Organic Frameworks: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402783. [PMID: 39115100 DOI: 10.1002/smll.202402783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Indexed: 11/08/2024]
Abstract
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
Collapse
Affiliation(s)
- Wen-Liang Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Qi Shuai
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jiamei Yu
- College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
14
|
Baharfar M, Hillier AC, Mao G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406083. [PMID: 39046077 DOI: 10.1002/adma.202406083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Supramolecular assemblies, formed through electronic charge transfer between two or more entities, represent a rich class of compounds dubbed as charge-transfer complexes (CTCs). Their distinctive formation pathway, rooted in charge-transfer processes at the interface of CTC-forming components, results in the delocalization of electronic charge along molecular stacks, rendering CTCs intrinsic molecular conductors. Since the discovery of CTCs, intensive research has explored their unique properties including magnetism, conductivity, and superconductivity. Their more recently recognized semiconducting functionality has inspired recent developments in applications requiring organic semiconductors. In this context, CTCs offer a tuneable energy gap, unique charge-transport properties, tailorable physicochemical interactions, photoresponsiveness, and the potential for scalable manufacturing. Here, an updated viewpoint on CTCs is provided, presenting them as emerging organic semiconductors. To this end, their electronic and chemical properties alongside their synthesis methods are reviewed. The unique properties of CTCs that benefit various related applications in the realms of organic optoelectronics, catalysts, and gas sensors are discussed. Insights for future developments and existing limitations are described.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| | - Andrew C Hillier
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE and Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia
| |
Collapse
|
15
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
16
|
Jena R, Rahimi FA, Mandal T, Das TN, Parambil SRV, Mondal SK, Maji TK. Photocatalytic CO 2 Reduction to Solar Fuels by a Chemically Stable Bimetallic Porphyrin-Based Framework. Inorg Chem 2024. [PMID: 39265145 DOI: 10.1021/acs.inorgchem.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Porphyrin-based photocatalysts have emerged as promising candidates for facilitating carbon dioxide (CO2) reduction due to their exceptional light-harvesting properties. However, their performance is hindered by complex synthesis procedures, limited structural stability, inadequate CO2 activation capabilities, and a lack of comprehensive structure-property relationships. This study investigates the performance of a porphyrin-based bimetallic framework, [Cu(TPP)Cu2Mo3O11] (TPP = tetrapyridylporphyrin), termed MoCu-1 for photocatalytic CO2 reduction. In addition to its straightforward one-pot synthesis method, the framework shows remarkable chemical stability, particularly notable in alkaline reaction conditions, making it a compelling option for sustainable catalytic applications. By harnessing the superior photoabsorption properties of the porphyrin linker and the abundance of catalytic sites provided by the bimetallic structure, this framework exhibits the potential for enhancing CO2 reduction efficiency. MoCu-1 demonstrates excellent activity in converting CO2 into CO, achieving a maximum yield of 3.21 mmol g-1 with a selectivity of ∼93%. We unravel the intricate interplay of structural features and catalytic activity through systematic characterization techniques and an in situ diffuse reflectance Fourier transform study, which provided insights into the mechanism governing CO2 conversion and was supported by density functional theory calculations. This work contributes to advancing our understanding of photocatalytic processes and offers guidance for designing robust materials for CO2 utilization in renewable energy applications.
Collapse
Affiliation(s)
- Rohan Jena
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tamagna Mandal
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tarak Nath Das
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sneha Raj V Parambil
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Soumya Kanti Mondal
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
17
|
Husson J. Functional Materials from Biomass-Derived Terpyridines: State of the Art and Few Possible Perspectives. Int J Mol Sci 2024; 25:9126. [PMID: 39201812 PMCID: PMC11354883 DOI: 10.3390/ijms25169126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
This review focuses on functional materials that contain terpyridine (terpy) units, which can be synthesized from biomass-derived platform chemicals. The latter are obtained by the chemical conversion of raw biopolymers such as cellulose (e.g., 2-furaldehyde) or lignin (e.g., syringaldehyde). These biomass-derived platform chemicals serve as starting reagents for the preparation of many different terpyridine derivatives using various synthetic strategies (e.g., Kröhnke reaction, cross-coupling reactions). Chemical transformations of these terpyridines provide a broad range of different ligands with various functionalities to be used for the modification or construction of various materials. Either inorganic materials (such as oxides) or organic ones (such as polymers) can be combined with terpyridines to provide functional materials. Different strategies are presented for grafting terpy to materials, such as covalent grafting through a carboxylic acid or silanization. Furthermore, terpy can be used directly for the elaboration of functional materials via complexation with metals. The so-obtained functional materials find various applications, such as photovoltaic devices, heterogeneous catalysts, metal-organic frameworks (MOF), and metallopolymers. Finally, some possible developments are presented.
Collapse
Affiliation(s)
- Jérôme Husson
- Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, F-25000 Besançon, France
| |
Collapse
|
18
|
Chiang CH, Lin CC, Lin YC, Huang CY, Lin CH, Chen YJ, Ko TR, Wu HL, Tzeng WY, Ho SZ, Chen YC, Ho CH, Yang CJ, Cyue ZW, Dong CL, Luo CW, Chen CC, Chen CW. Manipulating Ferroelectric Polarization and Spin Polarization of 2D CuInP 2S 6 Crystals for Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:23278-23288. [PMID: 39049154 PMCID: PMC11345765 DOI: 10.1021/jacs.4c05798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Manipulating electronic polarizations such as ferroelectric or spin polarizations has recently emerged as an effective strategy for enhancing the efficiency of photocatalytic reactions. This study demonstrates the control of electronic polarizations modulated by ferroelectric and magnetic approaches within a two-dimensional (2D) layered crystal of copper indium thiophosphate (CuInP2S6) to boost the photocatalytic reduction of CO2. We investigate the substantial influence of ferroelectric polarization on the photocatalytic CO2 reduction efficiency, utilizing the ferroelectric-paraelectric phase transition and polarization alignment through electrical poling. Additionally, we explore enhancing the CO2 reduction efficiency by harnessing spin electrons through the synergistic introduction of sulfur vacancies and applying a magnetic field. Several advanced characterization techniques, including piezoresponse force microscopy, ultrafast pump-probe spectroscopy, in situ X-ray absorption spectroscopy, and in situ diffuse reflectance infrared Fourier transformed spectroscopy, are performed to unveil the underlying mechanism of the enhanced photocatalytic CO2 reduction. These findings pave the way for manipulating electronic polarizations regulated through ferroelectric or magnetic modulations in 2D layered materials to advance the efficiency of photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Chun-Hao Chiang
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chieh Lin
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program
(TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Yin-Cheng Lin
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ying Huang
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular
Science and Technology Program, Taiwan International Graduate Program
(TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Lin
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ying-Jun Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Rong Ko
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
| | - Heng-Liang Wu
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
- Center
of
Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Yen Tzeng
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
- Department
of Electronic Engineering, National Formosa
University, Yunlin 632, Taiwan
| | - Sheng-Zhu Ho
- Department
of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Chun Chen
- Department
of Physics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Hwa Ho
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Zih-Wei Cyue
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chih-Wei Luo
- Department
of Electrophysics, National Yang Ming Chiao
Tung University, Hsinchu 300, Taiwan
| | - Chia-Chun Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Institute of Atomic and Molecular Sciences,
Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 10617, Taiwan
- Center
of
Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
19
|
Luo J, Sun S, Xia Z, Wen Y, Feng W, Shi S. Supramolecular Complex Surfactants and Structured Liquids Enabled by Cation-π and Charge-Transfer Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17747-17752. [PMID: 39115928 DOI: 10.1021/acs.langmuir.4c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cation-π and charge-transfer (CT) interactions are pervasive with significant implications in the fields of chemistry, materials science, and biology. However, much less is known about the construction of interfacial assemblies based on the two interactions. Here, by combining cation-π and CT interactions between an acceptor molecule, dicationic naphthalenediimide, and an aromatic donor, pyrene-terminated poly-l-lactic acid, we report the generation of supramolecular complex surfactants (SCSs) in situ at the toluene-water interface. The utilization of SCSs as building blocks enables the fabrication of interfacial assemblies including 2D films, emulsions, and structured liquids. By modification of the redox state of the acceptor molecules under chemical stimulus, the association/assembly and dissociation/disassembly of SCSs can be precisely regulated, imparting intriguing redox-responsive properties to the resulting assemblies.
Collapse
Affiliation(s)
- Jiaqiu Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuyi Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yunhui Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weixiao Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Zhang X, Li Z, Li H, Yang D, Ren Z, Zhang Y, Zhang J, Bu XH. Surface-Grafted Single-Atomic Pt-N x Complex with a Precisely Regulating Coordination Sphere for Efficient Electron Acceptor-Inducing Interfacial Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202404386. [PMID: 38720177 DOI: 10.1002/anie.202404386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Indexed: 07/16/2024]
Abstract
Based on the electron-withdrawing effect of the Pt(bpy)Cl2 molecule, a simple post-modification amide reaction was firstly used to graft it onto the surface of NH2-MIL-125, which performed as a highly efficient electron acceptor that induced the conversion of the photoinduced charge migration pathway from internal BDC→TiOx migration to external BDC→PtNx migration, significantly improving the efficiency of photoinduced electron transfer and separation. Furthermore, precisely regulating over the first coordination sphere of Pt single atoms was achieved using further post-modification with additional bipyridine to investigate the effect of Pt-Nx coordination numbers on reaction activity. The as-synthesized NML-PtN2 exhibited superior photocatalytic hydrogen evolution activity of 7.608 mmol g-1 h-1, a remarkable improvement of 225 and 2.26 times compared to pristine NH2-MIL-125 and NML-PtN4, respectively. In addition, the superior apparent quantum yield of 4.01 % (390 nm) and turnover frequency of 190.3 h-1 (0.78 wt % Pt SA; 129 times compared to Pt nanoparticles/NML) revealed the high solar utilization efficiency and hydrogen evolution activity of the material. And macroscopic color changes caused by the transition of carrier migration paths was first observed. It holds profound significance for the design of MOF-Molecule catalysts with efficient charge carrier separation and precise regulation of single-atom coordination sphere.
Collapse
Affiliation(s)
- Xinghao Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Zhigang Li
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Hanxi Li
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Di Yang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Zenghuan Ren
- College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yinqiang Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Jijie Zhang
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
- College of Chemistry Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Wang J, Sheng R, Xiao J, Lu L, Peng Y, Gu D, Xiao W. Matched Redox Kinetics on Triazine-Based Carbon Nitride/Ni(OH) 2 for Stoichiometric Overall Photocatalytic CO 2 Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309707. [PMID: 38386245 DOI: 10.1002/smll.202309707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Indexed: 02/23/2024]
Abstract
Mismatched reaction kinetics of CO2 reduction and H2O oxidation is the main obstacle limiting the overall photocatalytic CO2 conversion. Here, a molten salt strategy is used to construct tubular triazine-based carbon nitride (TCN) with more adsorption sites and stronger activation capability. Ni(OH)2 nanosheets are then grown over the TCN to trigger a proton-coupled electron transfer for a stoichiometric overall photocatalytic CO2 conversion via "3CO2 + 2H2O = CH4 + 2CO + 3O2." TCN reduces the energy barrier of H2O dissociation to promote H2O oxidation to O2 and supply sufficient protons to Ni(OH)2, whereby the CO2 conversion is accelerated due to the enhanced proton-coupled electron transfer process enabled by the sufficient proton supply from TCN. This work highlights the importance of matching the reaction kinetics of CO2 reduction and H2O oxidation by proton-coupled electron transfer on stoichiometric overall photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Ren Sheng
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Juanxiu Xiao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, School of Marine Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Li Lu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, P. R. China
| | - Yuhao Peng
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Dong Gu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
22
|
Chen Y, Li H, Zhang Y, Li Z, Yang D. Eu 3+-Directed Supramolecular Metallogels with Reversible Quadruple-Stimuli Response Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309542. [PMID: 38221683 DOI: 10.1002/smll.202309542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Smart luminescent materials that have the ability to reversibly adapt to external environmental stimuli and possess a wide range of responses are continually emerging, which place higher demands on the means of regulation and response sites. Here, europium ions (Eu3+)-directed supramolecular metallogels are constructed by orthogonal self-assembly of Eu3+ based coordination interactions and hydrogen bonding. A new organic ligand (L) is synthesized, consisting of crown ethers and two flexible amide bonds-linked 1,10-phenanthroline moieties to coordinate with Eu3+. Synergistic intermolecular hydrogen bonding in L and Eu3+-L coordination bonding enable Eu3+ and L to self-assemble into shape-persistent 3D coordination metallogels in MeOH solution. The key to success is the utilization of crown ethers, playing dual roles of acting both as building blocks to build L with C2-symmetrical structure, and as the ideal monomer for increasing the energy transfer from L to Eu3+'s excited state, thus maintaining the excellent luminescence of metallogels. Interestingly, such assemblies show K+, pH, F-, and mechano-induced reversible gel-sol transitions and tunable luminescence properties. Above findings are useful in the studies of molecular switches, dynamic assemblies, and smart luminescent materials.
Collapse
Affiliation(s)
- Yan Chen
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Huimin Li
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Yakun Zhang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| | - Zhiqiang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, China
| | - Daqing Yang
- College of Chemistry and Materials Science, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, No. 180 Wusi East Road, Baoding, Hebei, 071002, China
| |
Collapse
|
23
|
Cappelletti D, Barbieri M, Aliprandi A, Maggini M, Đorđević L. Self-assembled π-conjugated chromophores: preparation of one- and two-dimensional nanostructures and their use in photocatalysis. NANOSCALE 2024; 16:9153-9168. [PMID: 38639760 PMCID: PMC11097008 DOI: 10.1039/d4nr00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Photocatalytic systems have attracted research interest as a clean approach to generate energy from abundant sunlight. In this context, developing efficient and robust photocatalytic structures is crucial. Recently, self-assembled organic chromophores have entered the stage as alternatives to both molecular systems and (in)organic semiconductors. Nanostructures made of self-assembled π-conjugated dyes offer, on the one hand, molecular customizability to tune their optoelectronic properties and activities and on the other hand, provide benefits from heterogeneous catalysis that include ease of separation, recyclability and improved photophysical properties. In this contribution, we present recent achievements in constructing supramolecular photocatalytic systems made of chromophores for applications in water splitting, H2O2 evolution, CO2 reduction, or environmental remediation. We discuss strategies that can be used to prepare ordered photocatalytic systems with an emphasis on the effect of packing between the dyes and the resulting photocatalytic activity. We further showcase supramolecular strategies that allow interfacing the organic nanostructures with co-catalysts, molecules, polymers, and (in)organic materials. The principles discussed here are the foundation for the utilization of these self-assembled materials in photocatalysis.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Marianna Barbieri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
24
|
Gudmundsson TA, Kuppadakkath G, Ghosh D, Ruether M, Seddon A, Ginesi RE, Doutch J, Adams DJ, Gunnlaugsson T, Damodaran KK. Nanoscale assembly of enantiomeric supramolecular gels driven by the nature of solvents. NANOSCALE 2024; 16:8922-8930. [PMID: 38591601 DOI: 10.1039/d4nr00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Understanding the key parameters that control the self-assembly process is critical to predict self-assembly modes in multi-component systems, which will lead to the development of nanofibrous materials with tuneable properties. Enantiomeric amino acid-based low-molecular-weight gelators (LMWGs) were mixed in polar (polar protic) and aromatic apolar (aromatic) solvents and compared to their individual counterparts to probe the effect of solvent polarity on the self-assembly process. Scanning electron microscopy (SEM) reveals that xerogels of individual components display hollow needles in polar protic solvents, while chiral coils are observed in aromatic solvents. In contrast, the multi-component gel displays hollow needle morphologies in both solvents, indicating similar morphologies in polar protic solvents but an entirely different nanostructure for the individual gel networks in aromatic solvents. PXRD experiments performed on the dried gels showed that the nature of the solvents plays a vital role in the co-assembly process of multi-component gels. The self-assembly modes and the gel state structure of the gels are analysed by wide-angle X-ray diffraction (WAXS) and small-angle neutron diffraction (SANS), which reveals that the mixed gel undergoes different co-assembly modes depending on the nature of the solvent systems. This study shows that different co-assembly modes can be achieved for structurally similar components by varying the solvent polarity, demonstrating the importance of solvent choice in the self-assembly process of multi-component gels.
Collapse
Affiliation(s)
- Tómas A Gudmundsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, D02 PN40, Ireland
| | - Geethanjali Kuppadakkath
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Manuel Ruether
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, D02 PN40, Ireland
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1TL, UK
| | - Rebecca E Ginesi
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thorfinnur Gunnlaugsson
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI) and Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, D02 PN40, Ireland
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| |
Collapse
|
25
|
Geng L, Li H, Liu J, Yang Z, Wei J. Molecular Stacking Dependent Molecular Oxygen Activation in Supramolecular Polymeric Photocatalysts. J Phys Chem Lett 2024; 15:3127-3134. [PMID: 38471101 DOI: 10.1021/acs.jpclett.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Here, we showed that supramolecular assemblies based on perylene diimides (PDIs) are able to activate molecular oxygen through both the electron transfer and energy transfer pathways, which consequently leads to the formation of superoxide radicals (·O2-) and singlet oxygen species (1O2), respectively. These reactive oxygen species (ROS) can effectively lead to oxidative coupling of benzylamine and oxidation of 2-chloroethyl sulfide (CEES). We have designed and synthesized PDIs with similar molecular structures yet differing by the molecular stacking modes. We found that the photooxidation activities of the PDI supramolecular assemblies are inversely associated with the photoluminescence wavelength difference between the assemblies and the monomers (Δλ) quantitatively, and a smaller Δλ results in a higher catalytic efficiency accordingly. Overall, this work contributes to the design and fabrication of high performance photocatalysts based on metal-free organic materials.
Collapse
Affiliation(s)
- Lifang Geng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Hui Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
26
|
Wang S, Song D, Liao L, Li M, Li Z, Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv Colloid Interface Sci 2024; 324:103088. [PMID: 38244532 DOI: 10.1016/j.cis.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BiOCl materials have received much attention because of their unique optical and electrical properties. Still, their unsatisfactory catalytic performance has been troubling researchers, limiting the application of BiOCl-based photocatalysts. Therefore, many researchers have studied the adjustment of BiOCl-based materials to enhance photocatalytic efficiency. This review focuses on surface and interface engineering strategies for boosting the photocatalytic performance of BiOCl-based nanomaterials, including forming oxygen vacancy defects, constructing metal/BiOCl, and the fabrication of semiconductor/BiOCl nanocomposites. The photocatalytic applications of the above composites are also concluded in photodegradation of aqueous pollutants, photocatalytic NO removal, photo-induced H2 production, and CO2 reduction. Special emphasis has been given to the modification methods of BiOCl and photocatalytic mechanisms to provide a more detailed understanding for researchers in the fields of energy conversion and materials sciences.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Dongxue Song
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
27
|
He B, Xiao P, Wan S, Zhang J, Chen T, Zhang L, Yu J. Rapid Charge Transfer Endowed by Interfacial Ni-O Bonding in S-scheme Heterojunction for Efficient Photocatalytic H 2 and Imine Production. Angew Chem Int Ed Engl 2023; 62:e202313172. [PMID: 37908153 DOI: 10.1002/anie.202313172] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Cooperative coupling of H2 evolution with oxidative organic synthesis is promising in avoiding the use of sacrificial agents and producing hydrogen energy with value-added chemicals simultaneously. Nonetheless, the photocatalytic activity is obstructed by sluggish electron-hole separation and limited redox potentials. Herein, Ni-doped Zn0.2 Cd0.8 S quantum dots are chosen after screening by DFT simulation to couple with TiO2 microspheres, forming a step-scheme heterojunction. The Ni-doped configuration tunes the highly active S site for augmented H2 evolution, and the interfacial Ni-O bonds provide fast channels at the atomic level to lower the energy barrier for charge transfer. Also, DFT calculations reveal an enhanced built-in electric field in the heterojunction for superior charge migration and separation. Kinetic analysis by femtosecond transient absorption spectra demonstrates that expedited charge migration with electrons first transfer to Ni2+ and then to S sites. Therefore, the designed catalyst delivers drastically elevated H2 yield (4.55 mmol g-1 h-1 ) and N-benzylidenebenzylamine production rate (3.35 mmol g-1 h-1 ). This work provides atomic-scale insights into the coordinated modulation of active sites and built-in electric fields in step-scheme heterojunction for ameliorative photocatalytic performance.
Collapse
Affiliation(s)
- Bowen He
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
28
|
Melinte V, Culica ME, Chibac-Scutaru AL. Cellulose acetate/polyurethane blend as support matrix with high optical transparency and improved mechanical properties for photocatalyst CeO 2 nanoparticles immobilization. Int J Biol Macromol 2023; 251:126210. [PMID: 37579894 DOI: 10.1016/j.ijbiomac.2023.126210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Advanced manufacturing technologies for efficient catalytic materials have triggered the rational design of catalysts as well as extensive investigation into preparative methodologies. Herein, we report the preparation of new versatile cellulose acetate/polyurethane (CA/PU) blends for efficient immobilization of CeO2 nanoparticles, the appropriate composition of polymer mixture being chosen after rigorous analysis (SEM, FTIR, optical, mechanical). The band gap energy for hybrid films ranged between 3.02 eV and 2.05 eV, the lowest value being measured for the film with Co-doped CeO2 NPs (B3 film). The best results in photodegradation of methylene blue under visible-light irradiation was attained after 50 min for B3 film (rate constant k = 45.34× 10-3 min-1), while the total mineralization of MB in the same conditions as evaluated by HPLC-ESI MS and TOC analyses was achieved after 90 min. Effect of co-ions (SO42-, Cl- or NO3-) on photocatalytic performance was studied, and scavenger tests were used to identify the active species involved in the photocatalytic mechanism. Also, the photocatalytic efficiency of B3 sample was tested for rhodamine B, metronidazole and 4-nitrophenol degradation. Evaluation of the stability and integrity of hybrid film after 5 catalysis cycles reveal that the photocatalytic potential is retained with no substantial structural changes.
Collapse
Affiliation(s)
- Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Madalina Elena Culica
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Andreea Laura Chibac-Scutaru
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
29
|
Karmakar S, Barman S, Rahimi FA, Rambabu D, Nath S, Maji TK. Confining charge-transfer complex in a metal-organic framework for photocatalytic CO 2 reduction in water. Nat Commun 2023; 14:4508. [PMID: 37495574 PMCID: PMC10371996 DOI: 10.1038/s41467-023-40117-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
In the quest for renewable fuel production, the selective conversion of CO2 to CH4 under visible light in water is a leading-edge challenge considering the involvement of kinetically sluggish multiple elementary steps. Herein, 1-pyrenebutyric acid is post-synthetically grafted in a defect-engineered Zr-based metal organic framework by replacing exchangeable formate. Then, methyl viologen is incorporated in the confined space of post-modified MOF to achieve donor-acceptor complex, which acts as an antenna to harvest visible light, and regulates electron transfer to the catalytic center (Zr-oxo cluster) to enable visible-light-driven CO2 reduction reaction. The proximal presence of the charge transfer complex enhances charge transfer kinetics as realized from transient absorption spectroscopy, and the facile electron transfer helps to produce CH4 from CO2. The reported material produces 7.3 mmol g-1 of CH4 under light irradiation in aqueous medium using sacrificial agents. Mechanistic information gleans from electron paramagnetic resonance, in situ diffuse reflectance FT-IR and density functional theory calculation.
Collapse
Affiliation(s)
- Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Soumitra Barman
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Sukhendu Nath
- Ultrafast Spectroscopy Section, Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
30
|
Sun Y, Liu L, Jiang L, Chen Y, Zhang H, Xu X, Liu Y. Unimolecular Chiral Stepping Inversion Machine. J Am Chem Soc 2023. [PMID: 37486147 DOI: 10.1021/jacs.3c04430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Intelligent molecular machines that are driven by light, electricity, and temperature have attracted considerable interest in the fields of chemistry, materials, and biology. Herein, a unimolecular chiral stepping inversion molecular machine (SIMM) was constructed by a coupling reaction between dibromo pillar[5]arene and a tetrathiafulvalene (TTF) derivative (PT3 and PT5). Compared with the longer aliphatic linker PT5, PT3 with a shorter aliphatic linker shows chiral stepping inversion, achieving chiral inversion under a two-electron redox potential. Benefiting from the successive reversible two-electron redox potential of TTF, the self-exclusion and self-inclusion conformational transformations of SIMM can proceed in two steps under redox, leading to the chirality step inversion in the pillar[5]arene core. Electrochemical experiments and circular dichroism (CD) spectra show that the redox processes can cause SIMM CD signaling to reversibly switch. More importantly, as the oxidant Fe(ClO4)3 was increased from 0.1 to 1 equiv, the CD spectral signal of SIMM disappeared at 1 equiv, and further addition of Fe(ClO4)3 resulted in the CD signal reversed from positive to negative at 309 nm, indicating that the chirality was reversed after chemical oxidation and reached a negative maximum with the addition of 2 equiv Fe(ClO4)3; thus, redox-triggered chiral stepping inversion was achieved. Furthermore, the chiral inversion can be restored to its original state after the addition of 2 equiv of reducing agent, sodium ascorbate. This work demonstrates unimolecular chiral stepping inversion, providing a new perspective on stimulus-responsive chirality in molecular machines.
Collapse
Affiliation(s)
- Yonghui Sun
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijuan Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Linnan Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hengyue Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
31
|
Yang Z, Zhou S, Feng X, Wang N, Ola O, Zhu Y. Recent Progress in Multifunctional Graphene-Based Nanocomposites for Photocatalysis and Electrocatalysis Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2028. [PMID: 37446544 DOI: 10.3390/nano13132028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
The global energy shortage and environmental degradation are two major issues of concern in today's society. The production of renewable energy and the treatment of pollutants are currently the mainstream research directions in the field of photocatalysis. In addition, over the last decade or so, graphene (GR) has been widely used in photocatalysis due to its unique physical and chemical properties, such as its large light-absorption range, high adsorption capacity, large specific surface area, and excellent electronic conductivity. Here, we first introduce the unique properties of graphene, such as its high specific surface area, chemical stability, etc. Then, the basic principles of photocatalytic hydrolysis, pollutant degradation, and the photocatalytic reduction of CO2 are summarized. We then give an overview of the optimization strategies for graphene-based photocatalysis and the latest advances in its application. Finally, we present challenges and perspectives for graphene-based applications in this field in light of recent developments.
Collapse
Affiliation(s)
- Zanhe Yang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siqi Zhou
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xiangyu Feng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
32
|
Verma P, Samanta D, Sutar P, Kundu A, Dasgupta J, Maji TK. Biomimetic Approach toward Visible Light-Driven Hydrogen Generation Based on a Porphyrin-Based Coordination Polymer Gel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25173-25183. [PMID: 36449661 DOI: 10.1021/acsami.2c14533] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been a widespread interest in developing self-assembled porphyrin nanostructures to mimic nature's light-harvesting processes. Herein, porphyrin-based coordination polymer gel (CPG) has been developed as a "soft" photocatalyst material for hydrogen (H2) production from water under visible light. The CPG offers a hierarchical nanofibrous network structure obtained through self-assembly of a terpyridine alkyl-amide appended porphyrin (TPY-POR)-based low molecular weight gelator with ruthenium ions (RuII) and produces H2 with a rate of 5.7 mmol g-1 h-1 in the presence of triethylamine (TEA) as a sacrificial electron donor. Further, the [Fe2(bdt)(CO)6] (dbt = 1,2-benzenedithiol) cocatalyst, which can mimic the activity of iron hydrogenase, is coassembled in the CPG and shows remarkable improvement in H2 evolution (catalytic activity; rate ∼10.6 mmol g-1 h-1 and turnover number ∼1287). The significant enhancement in catalytic activity was supported by several controlled experiments, including femtosecond transient absorption (TA) spectroscopy and also DFT calculation. The TA study supported the cascade electron transfer process from porphyrin core to [Ru(TPY)2]2+ center, and subsequently, the electron transfers to the cocatalyst [Fe2(bdt)(CO)6] for H2 production.
Collapse
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560 064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560 064, India
| | - Papri Sutar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560 064, India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai400005, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore560 064, India
| |
Collapse
|
33
|
Su X, Xu T, Ye R, Guo C, Wabaidur SM, Chen DL, Aftab S, Zhong Y, Hu Y. One-pot solvothermal synthesis of In-doped amino-functionalized UiO-66 Zr-MOFs with enhanced ligand-to-metal charge transfer for efficient visible-light-driven CO 2 reduction. J Colloid Interface Sci 2023; 646:129-140. [PMID: 37187046 DOI: 10.1016/j.jcis.2023.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 μmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Tongfei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ruixiang Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Changfa Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | | | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Yijun Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China; Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.
| |
Collapse
|
34
|
Niu Q, Chen Q, Huang G, Li L, He Y, Bi J. Build-in electric field in CuWO 4/covalent organic frameworks S-scheme photocatalysts steer boosting charge transfer for photocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 643:102-114. [PMID: 37054545 DOI: 10.1016/j.jcis.2023.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline porous materials with enormous potential for realizing solar-driven CO2-to-fuel conversion, yet the sluggish transfer/separation of photoinduced electrons and holes remains a compelling challenge. Herein, a step (S)-scheme heterojunction photocatalyst (CuWO4-COF) was rationally fabricated by a thermal annealing method for boosting CO2 conversion to CO. The optimal CuWO4/COF composite sample, integrating 10 wt% CuWO4 with an olefin (C═C) linked COF (TTCOF), achieved a remarkable gas-solid phase CO yield as high as 7.17 ± 0.35 μmol g-1h-1 under visible light irradiation, which was significantly higher than the pure COF (1.6 ± 0.29 μmol g-1h-1). The enhanced CO2 conversion rate could be attributable to the interface engineering effect and the formation of internal electric field (IEF) directing from TTCOF to CuWO4 according to the theoretical calculation and experimental results, which also proves the electrons transfer from TTCOF to CuWO4 upon hybridization. In addition, driven by the IEF, the photoinduced electrons can be steered from CuWO4 to TTCOF under visible light irradiation as well-elucidated by in-situ irradiated X-ray photoelectron spectroscopy, verifying the S-scheme charge transfer pathway over CuWO4/COF composite heterojunctions, which greatly foster the photoreduction activity of CO2. The preparation technique of the S-scheme heterojunction photocatalyst in this study provides a paradigmatic protocol for photocatalytic solar fuel generation.
Collapse
Affiliation(s)
- Qing Niu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Yunhui He
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, PR China.
| |
Collapse
|
35
|
Mo W, Fan Z, Zhong S, Chen W, Hu L, Zhou H, Zhao W, Lin H, Ge J, Chen J, Bai S. Embedding Plasmonic Metal into Heterointerface of MOFs-Encapsulated Semiconductor Hollow Architecture for Boosting CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207705. [PMID: 36710245 DOI: 10.1002/smll.202207705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Coupling hollow semiconductor with metal-organic frameworks (MOFs) holds great promise for constructing high-efficient CO2 photoreduction systems. However, energy band mismatch between them makes it difficult to exert their advantages to maximize the overall photocatalytic efficiency, since that the blockage of desirable interfacial charge transfer gives rise to the enrichment of photoelectrons and CO2 molecules on the different locations. Herein, an interfacial engineering is presented to overcome this impediment, based on the insertion of plasmonic metal into the heterointerfaces between them, forming a stacked semiconductor/metal@MOF photocatalyst. Experimental observations and theoretical simulations validate the critical roles of embedded Au in maneuvering the charge separation/transfer and surface reaction: (i) bridges the photoelectron transfer from hollow CdS (H-CdS) to ZIF-8; (ii) produces hot electrons and shifts them to ZIF-8; (iii) induces the formation of ZIF-8 defects in promoting the CO2 adsorption/activation and transformation to CO with low energy barriers. Consequently, the as-prepared H-CdS/Au@ZIF-8 with optimal ZIF-8 thickness exhibits distinctly boosted activity and superb selectivity in CO production as compared with H-CdS@ZIF-8 and other counterparts. This work provides protocols to take full advantages of components involved for enhanced solar-to-chemical energy conversion efficiency of hybrid artificial photosynthetic systems through rationally harnessing the charge transfer between them.
Collapse
Affiliation(s)
- Weihao Mo
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Zhixin Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Wenbin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Lingxuan Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hao Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Wei Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Jing Ge
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Taiyuan, Shanxi, 030031, P. R. China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, School of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
36
|
Wang J, Zhu W, Meng F, Bai G, Zhang Q, Lan X. Integrating Dual-Metal Sites into Covalent Organic Frameworks for Enhanced Photocatalytic CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Fanyu Meng
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
37
|
Humayun M, Ullah H, Hu C, Tian M, Pi W, Zhang Y, Luo W, Wang C. Enhanced Photocatalytic H 2 Evolution Performance of the Type-II FeTPPCl/Porous g-C 3N 4 Heterojunction: Experimental and Density Functional Theory Studies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892209 DOI: 10.1021/acsami.3c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is of great significance to improve the photocatalytic performance of g-C3N4 by promoting its surface-active sites and engineering more suitable and stable redox couples. Herein, first of all, we fabricated porous g-C3N4 (PCN) via the sulfuric acid-assisted chemical exfoliation method. Then, we modified the porous g-C3N4 with iron(III) meso-tetraphenylporphine chloride (FeTPPCl) porphyrin via the wet-chemical method. The as-fabricated FeTPPCl-PCN composite revealed exceptional performance for photocatalytic water reduction by evolving 253.36 and 8301 μmol g-1 of H2 after visible and UV-visible irradiation for 4 h, respectively. The performance of the FeTPPCl-PCN composite is ∼2.45 and 4.75-fold improved compared to that of the pristine PCN photocatalyst under the same experimental conditions. The calculated quantum efficiencies of the FeTPPCl-PCN composite for H2 evolution at 365 and 420 nm wavelengths are 4.81 and 2.68%, respectively. This exceptional H2 evolution performance is because of improved surface-active sites due to porous architecture and remarkably improved charge carrier separation via the well-aligned type-II band heterostructure. Besides, we also reported the correct theoretical model of our catalyst through density functional theory (DFT) simulations. It is found that the hydrogen evolution reaction (HER) activity of FeTPPCl-PCN arises from the electron transfer from PCN via Cl atom(s) to Fe of the FeTPPCl, which forms a strong electrostatic interaction, leading to a decreased local work function on the surface of the catalyst. We suggest that the resultant composite would be a perfect model for the design and fabrication of high-efficiency heterostructure photocatalysts for energy applications.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Habib Ullah
- Department of Renewable Energy, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Chao Hu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Mi Tian
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Wenbo Pi
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yi Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
38
|
Haldar R, Ghosh A, Maji TK. Charge transfer in metal-organic frameworks. Chem Commun (Camb) 2023; 59:1569-1588. [PMID: 36655919 DOI: 10.1039/d2cc05522h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs, also known as porous coordination polymers or PCPs) are a novel class of crystalline porous material. The tailorable porous structure, in terms of size, geometry and function, has attracted the attention of researchers across all disciplines of materials science. One of the many exciting aspects of MOFs is that through directional and reversible coordination bonding, organic linkers (chromophores with metal-coordinating functional groups) and metal ions (and clusters) can be spatially organized in a preconceived geometry. The well-defined spatial geometry of the metals and linkers is very advantageous for optoelectronic functions (solar cells, light-emitting diodes, photocatalysts) of the materials. This feature article evaluates the scope of charge transfer (CT) interactions in MOFs, involving the organic linkers and metal ion or cluster components. Irrespective of the type (size, shape, electronic property) of organic chromophores involved, MOFs provide an insightful path to design and make the CT process efficient. The selected examples of MOFs with CT characteristics do not only illustrate the design principles but render a pathway towards understanding the complex photophysical processes and implementing those for future optoelectronic and catalytic applications.
Collapse
Affiliation(s)
- Ritesh Haldar
- Tata Institute of Fundamental Research (TIFR) Hyderabad, Hyderabad 500046, India.
| | - Adrija Ghosh
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India.
| | - Tapas Kumar Maji
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India. .,Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
39
|
Rao F, An Y, Huang X, Zhu L, Gong S, Shi X, Lu J, Gao J, Huang Y, Wang Q, Liu P, Zhu G. “X-Scheme” Charge Separation Induced by Asymmetrical Localized Electronic Band Structures at the Ceria Oxide Facet Junction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fei Rao
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yurong An
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Xiaoyang Huang
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, U.K
| | - Lujun Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Siwen Gong
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Xianjin Shi
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, P. R. China
| | - Jiangbo Lu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Jianzhi Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yu Huang
- State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, P. R. China
| | - Qizhao Wang
- School Water and Environment, Key Lab Subsurface Hydrol Ecol Effects Arid Reg, Minist Educ, Chang’an University, Xi’an 710054, P. R. China
| | - Peng Liu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Gangqiang Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
40
|
Fang Y, Liu T, Chen L, Chao D. Morphology Control of Supramolecular Assembly for Superior CO 2 Photoreduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Youting Fang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
41
|
Wang J, Zhu W, Zhang Y, Yang X, Bai G, Zhang Q, Chen Y, Lan X. Structural Engineering of Donor−π–Acceptor Conjugated Polymers for Facilitating Charge Separation: A Dual-Functional Photocatalysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Wanbo Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xianheng Yang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
42
|
Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO 2 reduction. Nat Commun 2022; 13:6466. [PMID: 36309504 PMCID: PMC9617972 DOI: 10.1038/s41467-022-34263-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Colloidal quantum dots have been emerging as promising photocatalysts to convert CO2 into fuels by using solar energy. However, the above photocatalysts usually suffer from low CO2 adsorption capacity because of their nonporous structures, which principally reduces their catalytic efficiency. Here, we show that synchronizing imine polycondensation reaction to self-assembly of colloidal CdSe/CdS nanorods can produce micro-meso hierarchically porous nanocomposites with double-shelled nanocomposites. Owing to their hierarchical pores and the ability to separate photoexcited electrons, the self-assembled porous nanocomposites exhibit remarkably higher activity (≈ 64.6 μmol g−1 h−1) toward CO2 to CO in solid-gas regime than that of nonporous solids from self-assembled CdSe/CdS nanorods under identical conditions. Importantly, the length of the nanorods is demonstrated to be crucial to correlate their ability to long-distance separation of photogenerated electrons and holes along their axial direction. Overall, this approach provides a rational strategy to optimize the CO2 adsorption and conversion by integrating the inorganic and organic semiconductors. The authors design double shelled hollow superstructures from self-assembled CdSe/CdS nanorods in covalent organic frameworks for CO2 photo-reduction at a gas/solid interface.
Collapse
|
43
|
Yang F, Qu J, Zheng Y, Cai Y, Yang X, Li CM, Hu J. Recent advances in high-crystalline conjugated organic polymeric materials for photocatalytic CO 2 conversion. NANOSCALE 2022; 14:15217-15241. [PMID: 36218062 DOI: 10.1039/d2nr04727f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The photocatalytic conversion of carbon dioxide (CO2) to high-value-added fuels is a meaningful strategy to achieve carbon neutrality and alleviate the energy crisis. However, the low efficiency, poor selectivity, and insufficient product variety greatly limit its practical applications. In this regard, conjugated organic polymeric materials including carbon nitride (g-C3N4), covalent organic frameworks (COFs), and covalent triazine frameworks (CTFs) exhibit enormous potential owing to their structural diversity and functional tunability. Nevertheless, their catalytic activities are largely suppressed by the traditional amorphous or weakly crystalline structures. Therefore, constructing relevant high-crystalline materials to ameliorate their inherent drawbacks is an efficient strategy to enhance the photocatalytic performance of conjugated organic polymeric materials. In this review, the advantages of high-crystalline organic polymeric materials including reducing the concentration of defects, enhancing the built-in electric field, reducing the interlayer hydrogen bonding, and crystal plane regulation are highlighted. Furthermore, the strategies for their synthesis such as molten-salt, solid salt template, and microwave-assisted methods are comprehensively summarized, while the modification strategies including defect engineering, element doping, surface loading, and heterojunction construction are elaborated for enhancing their photocatalytic activities. Ultimately, the challenges and opportunities of high-crystalline conjugated organic polymeric materials in photocatalytic CO2 conversion are prospected to give some inspiration and guidance for researchers.
Collapse
Affiliation(s)
- Fengyi Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yang Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
44
|
Melinte V, Trifan SI, Chibac-Scutaru AL, Podasca V, Coseri S. Reusable catalysts based on CeO 2/cellulose derivative with visible light photocatalytic activity tuned by noble metal nanoparticles inclusion. Int J Biol Macromol 2022; 222:736-749. [PMID: 36174862 DOI: 10.1016/j.ijbiomac.2022.09.221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022]
Abstract
For environmental preservation, it is crucial to effectively remove organic waste from water. Several approaches have been put forth, but photocatalysis stands out as a quick and effective solution. In this study, some hybrid polymeric structures that were created by photopolymerizing cellulose acetate/castor oil urethane methacrylates with embedded CeO2 nanoparticles (NPs) and in situ photogenerated noble metal nanoparticles (Ag, Au, Pd) are characterized, and photochemically thoroughly evaluated. The effective modification of cellulose acetate with urethane methacrylate sequences and the degree of functionalization were first observed using 1H NMR and FTIR spectra. Additionally, scanning and transmission electron microscopy, X-ray diffraction, FT-IR and UV-visible spectroscopy were utilized to analyse the resultant nanocomposites. The homogeneous dispersion of CeO2 NPs (10-40 nm) into an organic matrix with the suitable functionalities, namely urethane and hydroxyl groups, favour the interfacial charge transfer reducing the Eg up to 2.85 eV. Moreover, noble metal nanoparticles (5-15 nm), such as Ag, Au and Pd introduction in nanocomposites, significantly lowered the Eg: 2.1 eV for CeAg samples, 1.7 eV for CeAu films and 1.5 eV for CePd films, respectively. This opens up new avenues for the creation of flexible cellulose-based photocatalysts that are active in visible light.
Collapse
Affiliation(s)
- Violeta Melinte
- "Petru Poni" Institute of Macromolecular Chemistry, Polyaddition and Photochemistry Department, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Sabina I Trifan
- "Petru Poni" Institute of Macromolecular Chemistry, Polyaddition and Photochemistry Department, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Andreea L Chibac-Scutaru
- "Petru Poni" Institute of Macromolecular Chemistry, Polyaddition and Photochemistry Department, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Viorica Podasca
- "Petru Poni" Institute of Macromolecular Chemistry, Polyaddition and Photochemistry Department, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Polyaddition and Photochemistry Department, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| |
Collapse
|
45
|
Qin H, Li N, Xu H, Guo Q, Cong H, Yu S. Double Confinement Hydrogel Network Enables Continuously Regenerative Solar‐to‐Hydrogen Conversion. Angew Chem Int Ed Engl 2022; 61:e202209687. [DOI: 10.1002/anie.202209687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Na Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Hou‐Ming Xu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Qiu‐Yan Guo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Huai‐Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China
| | - Shu‐Hong Yu
- Department of Chemistry Institute of Biomimetic Materials & Chemistry Anhui Engineering Laboratory of Biomimetic Materials Division of Nanomaterials and Chemistry Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
46
|
Qin H, Li N, Xu HM, Guo QY, Cong HP, Yu SH. Double Confinement Hydrogel Network Enables Continuously Regenerative Solar‐to‐Hydrogen Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haili Qin
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Na Li
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hou-Ming Xu
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Qiu-Yan Guo
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Huai-Ping Cong
- Hefei University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Shu-Hong Yu
- University of Science and Technology of China Division of Nanomaterials & Chemistry Jinzhai Road 96Hefei National Laboratory for Physical Sciences at Microscale 230026 Hefei CHINA
| |
Collapse
|
47
|
Ghosh A, Karmakar S, Rahimi FA, Roy RS, Nath S, Gautam UK, Maji TK. Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF toward Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25220-25231. [PMID: 35613366 DOI: 10.1021/acsami.1c23458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insights into developing innovative routes for the stabilization of photogenerated charge-separated states by suppressing charge recombination in photocatalysts is a topic of immense importance. Herein, we report the synthesis of a metal-organic framework (MOF)-based composite where CdS nanoparticles (NPs) are confined inside the nanosized pores of Zr4+-based MOF-808, namely, CdS@MOF-808. Anchoring l-cysteine into the nanospace of MOF-808 via postsynthetic ligand exchange allows the capture of Cd2+ ions from their aqueous solution, which are further utilized for in situ growth of CdS NPs inside the nanosized MOF pores. The formation of CdS@MOF-808 opens up a possibility for visible-light photocatalysis as CdS NPs (1-2 nm) are a well-studied semiconductor system with a band gap of ∼2.6 eV. The confinement of the CdS NPs inside the MOF pores, close to the Zr4+ cluster, opens up a shorter electron transfer route from CdS to the catalytic Zr4+ cluster and shows a high rate of H2 evolution (10.41 mmol g-1 h-1) from water with a loading of 3.56 wt % CdS. In contrast, a similar composite in which CdS NPs are stabilized on the external surface of MOF-808 reveals poor activity (0.15 mmol g-1 h-1). CdS NPs stabilized on the MOF-808 surface show slower and inefficient electron transfer kinetics compared to CdS stabilized inside the nanospace of the MOF, as realized by the transient absorption measurements. Therefore, this work unveils the critical role of stabilizing the photosensitizer NPs in close proximity of the catalytic sites in MOF systems towards developing highly efficient H2 evolution photocatalysts.
Collapse
Affiliation(s)
- Adrija Ghosh
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Sanchita Karmakar
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | - Tapas Kumar Maji
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post, Bangalore 560064, India
| |
Collapse
|
48
|
Fan J, Zhao Y, Du H, Zheng L, Gao M, Li D, Feng J. Light-Induced Structural Dynamic Evolution of Pt Single Atoms for Highly Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26752-26765. [PMID: 35666270 DOI: 10.1021/acsami.2c04794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Revealing the structural evolution of the real active site during photocatalysis is very important for understanding the catalytic mechanism, but it remains a great challenge. By employing single atoms (SAs) as the mechanism research platform, we investigated the variation of the SA structure under light and the corresponding reaction pathway controlment mechanism. In particular, taking the defect anchoring strategy, Pt SAs are anchored on the metal ion vacancy-rich ZnNiTi layered double hydroxide-etched (ZnNiTi-LDHs-E) support. It is proved by CO-Fourier transform infrared and X-ray absorption fine structure characterization methods that the Pt SAs could gain photoelectrons to form cationic Pt(IV), electron-rich Pt(II), and near-neutral Ptδ+ species at different light intensities. By in situ inducing the above different Pt SAs in photocatalytic CO2 reduction, a dramatic product distribution is observed: (1) under weak light, Pt(IV) SAs cannot activate CO, so CO cannot be further transformed into hydrocarbons; (2) under the moderate light, electron-rich Pt(II) SAs could cooperate with adjacent LDH surface sites (Ni2+/Ti4+) to open up the C-C coupling route for C2H6 generation; and (3) Pt SAs in the state of near-neutral Ptδ+ could directly hydrogenate CO into CH4. This work reveals the structural evolution of Pt SAs in photocatalysis and the corresponding effect on catalytic performance, which provides a new idea for the construction of highly efficient photocatalysts.
Collapse
Affiliation(s)
- Jiaxuan Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Haoxuan Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
49
|
Wang M, Su S, Zhong X, Kong D, Li B, Song Y, Jia C, Chen Y. Enhanced Photocatalytic Hydrogen Production Activity by Constructing a Robust Organic-Inorganic Hybrid Material Based Fulvalene and TiO2. NANOMATERIALS 2022; 12:nano12111918. [PMID: 35683773 PMCID: PMC9182102 DOI: 10.3390/nano12111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023]
Abstract
A novel redox-active organic-inorganic hybrid material (denoted as H4TTFTB-TiO2) based on tetrathiafulvalene derivatives and titanium dioxide with a micro/mesoporous nanomaterial structure has been synthesized via a facile sol-gel method. In this study, tetrathiafulvalene-3,4,5,6-tetrakis(4-benzoic acid) (H4TTFTB) is an ideal electron-rich organic material and has been introduced into TiO2 for promoting photocatalytic H2 production under visible light irradiation. Notably, the optimized composites demonstrate remarkably enhanced photocatalytic H2 evolution performance with a maximum H2 evolution rate of 1452 μmol g−1 h−1, which is much higher than the prototypical counterparts, the common dye-sensitized sample (denoted as H4TTFTB-5.0/TiO2) (390.8 μmol g−1 h−1) and pure TiO2 (18.87 μmol g−1 h−1). Moreover, the composites perform with excellent stability even after being used for seven time cycles. A series of characterizations of the morphological structure, the photoelectric physics performance and the photocatalytic activity of the hybrid reveal that the donor-acceptor structural H4TTFTB and TiO2 have been combined robustly by covalent titanium ester during the synthesis process, which improves the stability of the hybrid nanomaterials, extends visible-light adsorption range and stimulates the separation of photogenerated charges. This work provides new insight for regulating precisely the structure of the fulvalene-based composite at the molecule level and enhances our in-depth fundamental understanding of the photocatalytic mechanism.
Collapse
|
50
|
Hou Y, Zou L, Li Q, Chen M, Ruan H, Sun Z, Xu X, Yang J, Ma G. Supramolecular assemblies based on natural small molecules: Union would be effective. Mater Today Bio 2022; 15:100327. [PMID: 35757027 PMCID: PMC9214787 DOI: 10.1016/j.mtbio.2022.100327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products have been used to prevent and treat human diseases for thousands of years, especially the extensive natural small molecules (NSMs) such as terpenoids, steroids and glycosides. A quantity of studies are confined to concern about their chemical structures and pharmacological activities at the monomolecular level, whereas the spontaneous assemblies of them in liquids yielding supramolecular structures have not been clearly understood deeply. Compared to the macromolecules or synthetic small molecular compounds, NSMs have the inherent advantages of lower toxicity, better biocompatibility, biodegradability and biological activity. Self-assembly of single component and multicomponent co-assembly are unique techniques for designing supramolecular entities. Assemblies are of special significance due to their range of applications in the areas of drug delivery systems, pollutants capture, materials synthesis, etc. The assembled mechanism of supramolecular NSMs which are mainly driven by multiple non-covalent interactions are summarized. Furthermore, a new hypothesis aimed to interpret the integration effects of multi-components of traditional Chinese medicines (TCMs) inspired on the theory of supramolecular assembly is proposed. Generally, this review can enlighten us to achieve the qualitative leap for understanding natural products from monomolecule to supramolecular structures and multi-component interactions, which is valuable for the intensive research and application.
Collapse
Affiliation(s)
- Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|