1
|
Wu S, Fang J, Gao X, Liu R, Pei F, Li C, Chen C. A Versatile Dual-Responsive Shape-Memory Gripper via Additive Manufacturing Toward High-Performance Cross-Scale Objects Maneuvering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411029. [PMID: 39853903 DOI: 10.1002/smll.202411029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g., tiny micrometer-scale droplets) or the big ones (e.g., centimeter-scale screw) has been proposed, however, cross-scale maneuvering of these two species leveraging an all-in-one intelligent gripper is still challenging. Here, a magnet/light dual-responsive shape-memory gripper (DR-SMG) is reported, based on the hybrid of Fe-nanoparticles and shape-memory polymers. Thanks to its photothermal effect, the closed-state DR-SMG switches to the open state under the synergetic cooperation of near-infrared-ray (NIR) and a circinate magnetic field, referring to the temporary state. On the other hand, once the NIR is loaded, the temporary opened DR-SMG would reconfigure to its permanent closed state owing to shape-memory effect. Leveraging this principle, DR-SMG can grasp and release diverse cross-scale objects ranging from micrometers to centimeters including metals, glass balls, polymers, and small liquids. Significantly, this versatile DR-SMG is capable of spatially delivering multifunctional chemical droplets and conductive liquid metals, thereby enabling lab-on-chip and electrical switch applications. This work provides new insights into intelligent grippers and further advances the field of soft robotics.
Collapse
Affiliation(s)
- Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei, 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| | - Jinpeng Fang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xueli Gao
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ruixiang Liu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Feng Pei
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chuanzong Li
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Chao Chen
- Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
2
|
Zong Y, Xi M, Wang Y, Zeng G, Hu D, Hu H, Hou X, Nan K, Chen X, Xu F, Schmidt OG, Mei Y, Cui J. Waveguide Microactuators Self-Rolled Around an Optical Fiber Taper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418316. [PMID: 39955708 DOI: 10.1002/adma.202418316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Precisely capturing and manipulating microscale objects, such as individual cells and microorganisms, is fundamental to advancements in biomedical research and microrobotics. Photoactuators based on optical fibers serving as flexible, unobstructed waveguides are well-suited for these operations, particularly in confined locations where free-space illumination is impractical. However, integrating optical fibers with microscale actuators poses significant challenges due to size mismatch, resulting in slow responses inadequate for handling motile micro-objects. This study designs microactuators based on hydrogel/Au bilayer heterostructures that self-roll around a tapered optical fiber. This self-rolling mechanism enables the use of thin hydrogel layers only a few micrometers thick, which rapidly absorb and release water molecules during a phase transition. The resulting microactuators exhibit low bending stiffness and extremely fast responses, achieving large bending angles exceeding 800° within 0.55 s. Using this technique, this study successfully captures rapidly swimming Chlamydomonas and Paramecium, and demonstrates programmable non-reciprocal motion for effective non-contact manipulation of yeast cells. This approach provides a versatile platform for microscale manipulations and holds promise for advanced biomedical applications.
Collapse
Affiliation(s)
- Yang Zong
- Department of Materials Science, Fudan University, Shanghai, 200438, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Minjie Xi
- Department of Materials Science, Fudan University, Shanghai, 200438, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Yunqi Wang
- Department of Materials Science, Fudan University, Shanghai, 200438, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Guohonghao Zeng
- Department of Materials Science, Fudan University, Shanghai, 200438, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
| | - Dongliang Hu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kewang Nan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangzhong Chen
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, China
| | - Fan Xu
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China
| | - Oliver G Schmidt
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200438, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200438, China
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai, 200438, China
- International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
| |
Collapse
|
3
|
Yang B, Dong X, Lv W, Liu W, Lu M, Liu Z, Lu T, Li X, Lv S. A graphene-based photo-electro-thermal metamaterial for soft fixtures with superior grasping performance. iScience 2025; 28:111743. [PMID: 39898057 PMCID: PMC11787534 DOI: 10.1016/j.isci.2025.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/12/2024] [Accepted: 11/20/2024] [Indexed: 02/04/2025] Open
Abstract
Soft actuators are valued for their adaptability and diverse applications but often face challenges like slow response, high activation energy, and high energy consumption. To address these issues, we developed a graphene-assembled film (GAF) via the redox method, characterized by high thermal conductivity, conductivity, and stiffness. Using GAF as a photothermal and electrothermal driver, we engineered a sandwich-structured metamaterial (SSM) by combining two polymers with vastly different thermal expansion coefficients. The SSM achieved rapid response (<5 s), low actuation energy (≤0.22 W cm⁻2 or ≤3.55 V), and large bending curvature (>0.18 mm⁻1), surpassing conventional designs in response speed (226.2% faster) and curvature (249.1% higher). This metamaterial enables soft fixtures with superior gripping capabilities and low energy consumption, handling up to eight times the object mass of traditional designs. This work highlights advances in multi-stimulus metamaterials, offering significant implications for the development of high-performance soft actuators.
Collapse
Affiliation(s)
- Bowen Yang
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Xuanchen Dong
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Wenhao Lv
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Wenzhuo Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Mengying Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Zhe Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Tonghui Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Xianglin Li
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
| | - Song Lv
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063 China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063 China
| |
Collapse
|
4
|
Ding H, Yang D, Ding S, Ma F. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Soft Robot 2025. [PMID: 39792479 DOI: 10.1089/soro.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing. However, most existing methods are predetermined through the fabrication process and cannot reprogram their shape, facing limitations on multifunction. Besides, the achievable geometries are very limited due to the device's low integrated level of actuator elements. Here, we develop a polyvinylidene fluoride flexible piezoelectric actuator array based on a row/column addressing (RCA) scheme for reprogrammable high DoF shape morphing and locomotion. The specially designed row/column electrodes form a 6 × 6 array, which contains 36 actuator elements. By developing a high-voltage RCA control system, we can individually control all the elements in the array, leading to a highly reprogrammable array with various sophisticated high DoF shape morphing. We also demonstrate that the array is capable of propelling a robotic fish with various locomotions. This research provides a new method and approach for biomimetic robotics with better mimicry, aero/hydrodynamic efficiency, and maneuverability, as well as haptic display and object manipulation.
Collapse
Affiliation(s)
- Hong Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Dengfei Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Shuo Ding
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Fangyi Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
- School of Electromechanical Engineering & Transportation, Shaoxing Vocational & Technical College, Shaoxing, China
| |
Collapse
|
5
|
Liu Y, Wang B, Xu C, Zhou L, Zhu M, Jiang Z. Natural helical carboxymethyl cellulose fibers-based actuator for smart controller applications. Int J Biol Macromol 2024; 283:137644. [PMID: 39547610 DOI: 10.1016/j.ijbiomac.2024.137644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Water-responsive polymers have received great attention in the field of smart actuators due to their mechanical response to humidity without energy consumption. Natural polymers-based actuators are competitive because of their green, sustainable, and biocompatible characteristics. In this paper, we report a natural twisting carboxymethyl cellulose (CMC) fiber-based actuator (TCFA) with remarkable performance under water and moist stimulation. The water-responsive CMC fibers were prepared using wet spinning and twisting. Owing to the helical structure, good water absorption, and swelling performance, the CMC fiber exhibits excellent rotational motion with a rotation speed of 4615 rpm and recovery speed of 1538.4 rpm under water stimulation. In addition, the actuator revolutions remained almost constant after more than 254 cycles, thus demonstrating the excellent cyclic stability of this untwisting recovery process. Moreover, the CMC fiber shows application in a smart rainy curtain, smart crane, and concentration detection for alcohol solution. We offer an easy and scalable method to obtain a CMC fiber-based actuator with low cost, sustainability as well as excellent driving performance. Our work inspires a new idea in the design of cellulose-derived actuators and their application in future intelligent systems.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Baoxiu Wang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China; Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China.
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Lan Zhou
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China; Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China; College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
6
|
Zhou C, Xu Z, Lin Z, Qin X, Xia J, Ai X, Lou C, Huang Z, Huang S, Liu H, Zou Y, Chen W, Yang GZ, Gao A. Submillimeter fiber robots capable of decoupled macro-micro motion for endoluminal manipulation. SCIENCE ADVANCES 2024; 10:eadr6428. [PMID: 39576861 PMCID: PMC11584019 DOI: 10.1126/sciadv.adr6428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Endoluminal and endocavitary intervention via natural orifices of the body is an emerging trend in medicine, further underpinning the future of early intervention and precision surgery. This motivates the development of small continuum robots to navigate freely in confined and tortuous environment. The trade-off between a large range of motion and high precision with concomitant actuation cross-talk poses a major challenge. Here, we present a submillimeter-scale fiber robot (~1 mm) capable of decoupled macro and micro manipulations for intervention and operation. The thin optical fibers, working both as mechanical tendons and light waveguides, can be pulled/pushed to actuate the macro tendon-driven continuum robot and transmit light to actuate the liquid crystal elastomer-based micro built-in light-driven parallel robot. The combination of the decoupled macro and micro motions can accomplish accurate cross-scale motion from several millimeters down to tens of micrometers. In vivo animal studies are performed to demonstrate its positioning accuracy of precise micro operations in endoluminal or endocavitary intervention.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Xu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaotong Qin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyuan Xia
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojie Ai
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuqian Lou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Huang
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huanghua Liu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Zou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weidong Chen
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
8
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
9
|
Li S, Zhang J, He J, Liu W, Wang Y, Huang Z, Pang H, Chen Y. Functional PDMS Elastomers: Bulk Composites, Surface Engineering, and Precision Fabrication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304506. [PMID: 37814364 DOI: 10.1002/advs.202304506] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/11/2023]
Abstract
Polydimethylsiloxane (PDMS)-the simplest and most common silicone compound-exemplifies the central characteristics of its class and has attracted tremendous research attention. The development of PDMS-based materials is a vivid reflection of the modern industry. In recent years, PDMS has stood out as the material of choice for various emerging technologies. The rapid improvement in bulk modification strategies and multifunctional surfaces has enabled a whole new generation of PDMS-based materials and devices, facilitating, and even transforming enormous applications, including flexible electronics, superwetting surfaces, soft actuators, wearable and implantable sensors, biomedicals, and autonomous robotics. This paper reviews the latest advances in the field of PDMS-based functional materials, with a focus on the added functionality and their use as programmable materials for smart devices. Recent breakthroughs regarding instant crosslinking and additive manufacturing are featured, and exciting opportunities for future research are highlighted. This review provides a quick entrance to this rapidly evolving field and will help guide the rational design of next-generation soft materials and devices.
Collapse
Affiliation(s)
- Shaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaqi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jian He
- Yizhi Technology (Shanghai) Co., Ltd, No. 99 Danba Road, Putuo District, Shanghai, 200062, China
| | - Weiping Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Center for Composites, COMAC Shanghai Aircraft Manufacturing Co. Ltd, Shanghai, 201620, China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Maryland NanoCenter, University of Maryland, College Park, MD, 20742, USA
| | - Zhongjie Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
10
|
Wang D, Chen Z, Li M, Hou Z, Zhan C, Zheng Q, Wang D, Wang X, Cheng M, Hu W, Dong B, Shi F, Sitti M. Bioinspired rotary flight of light-driven composite films. Nat Commun 2023; 14:5070. [PMID: 37604907 PMCID: PMC10442326 DOI: 10.1038/s41467-023-40827-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Light-driven actuators have great potential in different types of applications. However, it is still challenging to apply them in flying devices owing to their slow response, small deflection and force output and low frequency response. Herein, inspired by the structure of vine maple seeds, we report a helicopter-like rotary flying photoactuator (in response to 0.6 W/cm2 near-infrared (NIR) light) with ultrafast rotation (~7200 revolutions per minute) and rapid response (~650 ms). This photoactuator is operated based on a fundamentally different mechanism that depends on the synergistic interactions between the photothermal graphene and the hygroscopic agar/silk fibroin components, the subsequent aerodynamically favorable airscrew formation, the jet propulsion, and the aerodynamics-based flying. The soft helicopter-like photoactuator exhibits controlled flight and steering behaviors, making it promising for applications in soft robotics and other miniature devices.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhaomin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Zhen Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Changsong Zhan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qijun Zheng
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Dalei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials & Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092, Zürich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
11
|
Xu X, Cao J, Peng D, Chen B. A tailor-made double-tapered fibre array enables the state-of-the-art scintillators. Sci Bull (Beijing) 2023:S2095-9273(23)00374-2. [PMID: 37336687 DOI: 10.1016/j.scib.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Affiliation(s)
- Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jie Cao
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
12
|
Ma ZC, Fan J, Wang H, Chen W, Yang GZ, Han B. Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300469. [PMID: 36855777 DOI: 10.1002/smll.202300469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/02/2023]
Abstract
Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.
Collapse
Affiliation(s)
- Zhuo-Chen Ma
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiahao Fan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
| | - Hesheng Wang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
| | - Weidong Chen
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
13
|
Luo Y, Sun C, Ma H, Wei M, Li J, Jian J, Zhong C, Chen Z, Tang R, Richardson KA, Lin H, Li L. Flexible passive integrated photonic devices with superior optical and mechanical performance. OPTICS EXPRESS 2022; 30:26534-26543. [PMID: 36236849 DOI: 10.1364/oe.464896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Flexible integrated photonics is a rapidly emerging technology with a wide range of possible applications in the fields of flexible optical interconnects, conformal multiplexing sensing, health monitoring, and biotechnology. One major challenge in developing mechanically flexible integrated photonics is the functional component within an integrated photonic circuit with superior performance. In this work, several essential flexible passive devices for such a circuit were designed and fabricated based on a multi-neutral-axis mechanical design and a monolithic integration technique. The propagation loss of the waveguide is calculated to be 4.2 dB/cm. In addition, we demonstrate a microring resonator, waveguide crossing, multimode interferometer (MMI), and Mach-Zehnder interferometer (MZI) for use at 1.55 µm, each exhibiting superior optical and mechanical performance. These results represent a significant step towards further exploring a complete flexible photonic integrated circuit.
Collapse
|
14
|
Ran Y, Xu Z, Chen M, Wang W, Wu Y, Cai J, Long J, Chen Z, Zhang D, Guan B. Fiber-Optic Theranostics (FOT): Interstitial Fiber-Optic Needles for Cancer Sensing and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200456. [PMID: 35319824 PMCID: PMC9130922 DOI: 10.1002/advs.202200456] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Photonics has spurred a myriad of diagnostic and therapeutic applications for defeating cancer owing to its superiority in spatiotemporal maneuverability and minimal harm. The limits of light penetration depth and elusiveness of photosensitizer utilization, however, impede the implementation of the photodiagnostic and -therapy for determining and annihilating the deep-situated tumor. Herein, a promising strategy that harnesses functional optical fibers is developed and demonstrated to realize an in vivo endoscopic cancer sensing and therapy ensemble. Tumor detection is investigated using hypoxia-sensitive fluorescent fibers to realize fast and accurate tumor recognition and diagnosis. The tumor treatment is further performed by exploiting the endogenous photothermal effect of rare-earth-doped optical fibers. The eradication of orthotopic and subcutaneous xenografts significantly validates the availability of tumoricidal fibers. The strategy opens horizons to inspire the design of optical fiber-mediated "plug and play" precise tumor theranostics with high safety, which may intrigue broader fields, such as fiber optics, materials, chemistry, medicine, and clinics.
Collapse
Affiliation(s)
- Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou510632China
- Department of Laboratory MedicineGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Zhiyuan Xu
- Department of Laboratory MedicineGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Minfeng Chen
- College of PharmacyJinan UniversityGuangzhou510632China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs ResearchJinan UniversityGuangzhou510632China
| | - Wei Wang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Yang Wu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Jiexuan Cai
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Junqiu Long
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou510632China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Dongmei Zhang
- College of PharmacyJinan UniversityGuangzhou510632China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs ResearchJinan UniversityGuangzhou510632China
| | - Bai‐Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|