1
|
Syamal S, Taritsa IC, Alvarez AH, Schuster K, Foppiani J, Kaplan D, Lin SJ. Evaluating the Mechanical Strength of 3-Dimensionally Printed Implants in Septorhinoplasty through Finite Element Analysis. Plast Reconstr Surg 2025; 155:319e-333e. [PMID: 38923894 DOI: 10.1097/prs.0000000000011600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
BACKGROUND Autologous nasoseptal cartilage grafts are used to correct nasal asymmetry and deviation in rhinoplasty, but patients who have undergone multiple operations may have limited autologous cartilage tissue available. L-strut implants created on a 3-dimensional (3D) printer may address these challenges in the future, but their mechanical strength is understudied. Silk fibroin-gelatin (SFG), polycaprolactone (PCL), and polylactide (PLA) are bioinks known for their strength. The authors present finite element analysis (FEA) models comparing the mechanical strength of 3D-printed SFG, PCL, and PLA implants with nasoseptal cartilage grafts when autologous or allografts are not available. METHODS FEA models compared the stress and deformation responses of 3D-printed solid and scaffold implant replacements to cartilage. To simulate a daily force from overlying soft tissue, a unidirectional load was applied at the "keystone" region given its structural role and compared with native cartilaginous properties. RESULTS The 3D-printed solid SFG, PCL, and PLA and scaffold PCL and PLA models demonstrated lower deformations compared with cartilage. Solid SFG balanced strength and flexibility. The maximum stress was below all materials' yield stresses, suggesting that their deformations are unlikely permanent under a daily load. CONCLUSIONS The authors' FEA models suggest that 3D-printed L-strut implants carry promising mechanical strength. Solid SFG results mimicked cartilage's mechanical behavior. Thus, scaffold SFG merits further geometric optimization for potential use for cartilage substitution. The 3D-printed septal cartilage replacement implants can potentially enhance surgical management of patients who lack available donor cartilage in select settings. CLINICAL RELEVANCE STATEMENT Computational simulations can evaluate the strength of 3D-printed implants and their potential to replace septal cartilage in septorhinoplasty. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
Affiliation(s)
- Sujata Syamal
- From the Division of Continuing Education, Harvard University Extension School Cambridge
| | - Iulianna C Taritsa
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Angelica Hernandez Alvarez
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Kirsten Schuster
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Jose Foppiani
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University
| | - Samuel J Lin
- Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School
- Department of Biomedical Engineering, Tufts University
| |
Collapse
|
2
|
Chen Z, Chen S, Andrabi SM, Zhao G, Xu Y, Ouyang Q, Busquets ME, Qian X, Gautam S, Chen PY, Xie J, Yan Z. Multifunctional Porous Soft Composites for Bimodal Wearable Cardiac Monitors. AIChE J 2024; 70:e18576. [PMID: 39713103 PMCID: PMC11661810 DOI: 10.1002/aic.18576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 12/24/2024]
Abstract
Wearable heart monitors are crucial for early diagnosis and treatment of heart diseases in non-clinical settings. However, their long-term applications require skin-interfaced materials that are ultrasoft, breathable, antibacterial, and possess robust, enduring on-skin adherence-features that remain elusive. Here, we have developed multifunctional porous soft composites that meet all these criteria for skin-interfaced bimodal cardiac monitoring. The composite consists of a bilayer structure featuring phase-separated porous elastomer and slot-die-coated biogel. The porous elastomer ensures ultrasoftness, breathability, ease of handling, and mechanical integrity, while the biogel enables long-term on-skin adherence. Additionally, we incorporated ε-polylysine in the biogel to offer antibacterial properties. Also, the conductive biogel embedded with silver nanowires was developed for use in electrocardiogram sensors to reduce contact impedance and ensure high-fidelity recordings. Furthermore, we assembled a bimodal wearable cardiac monitoring system that demonstrates high-fidelity recordings of both cardiac electrical (electrocardiogram) and mechanical (seismocardiogram) signals over a 14-day testing period.
Collapse
Affiliation(s)
- Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Sicheng Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yadong Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qunle Ouyang
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Milton E. Busquets
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | - Xiaoyan Qian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Sandeep Gautam
- Division of Cardiovascular Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois, Chicago, IL 60607, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68130, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
- Materials Science and Engineering Institute, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Mostafa HIA, Elfiki AA. Bacteriorhodopsin of purple membrane reverses anisotropy outside the pH range of proton pumping based on logic gate realization. Sci Rep 2024; 14:29452. [PMID: 39604500 PMCID: PMC11603030 DOI: 10.1038/s41598-024-80512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
The bacteriorhodopsin of purple membrane is the first discovered light-sensing protein among ion transporting microbial rhodopsins, some of which (e.g. Archaerhodopsin 3) could be broadly used as tools in optogenetics having wide potential of medical applications. Since its discovery as early as in 1971, bacteriorhodopsin has attracted wide interests in nano-biotechnology, particularly in optoelectronics devices. Therefore, the present work has been motivated due to two topics; firstly, anisotropy demand became indispensible in bioelectronics; secondly, the stationary level of electric response in bacteriorhodopsin within the pH range of proton pumping (pH 3 - pH 10) implies, in turn, raising here a question about whether the electric anisotropy is implicated for reducing (or switching off) such level beyond such pH range. Noteworthy is that the purple membrane converts to blue form upon acidification, while to reddish purple form upon alkalization. In the present study, the acidic and alkaline forms of bacteriorhodopsin have exhibited most probable state of reversal for the dielectric anisotropy around pH 2.5 and pH 10.5, respectively. This is underscored by proposing a correlation seemingly found between disassembly of the crystalline structure of bacteriorhodopsin and the reversal of dielectric anisotropy, at such acidic and alkaline reversal pH's, in terms of the essence of the crystalline lattice. Most importantly, the results have substantiated dual frequency characteristics and logic gate-based dielectric anisotropy reversal to bacteriorhodopsin, which may implicate it for potential applications in bioelectronics.
Collapse
Affiliation(s)
- Hamdy I A Mostafa
- Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Abdo A Elfiki
- Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
4
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024; 11:5843-5873. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
5
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Liu X, Wang D, Chen W, Kang Y, Fang S, Luo Y, Luo D, Yu H, Zhang H, Liang K, Fu L, Ooi BS, Liu S, Sun H. Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality. Nat Commun 2024; 15:7671. [PMID: 39227588 PMCID: PMC11371922 DOI: 10.1038/s41467-024-51194-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Optoelectronic synapses, leveraging the integration of classic photo-electric effect with synaptic plasticity, are emerging as building blocks for artificial vision and photonic neuromorphic computing. However, the fundamental working principles of most optoelectronic synapses mainly rely on physical behaviors while missing chemical-electric synaptic processes critical for mimicking biorealistic neuromorphic functionality. Herein, we report a photoelectrochemical synaptic device based on p-AlGaN/n-GaN semiconductor nanowires to incorporate chemical-electric synaptic behaviors into optoelectronic synapses, demonstrating unparalleled dual-modal plasticity and chemically-regulated neuromorphic functions through the interplay of internal photo-electric and external electrolyte-mediated chemical-electric processes. Electrical modulation by implementing closed or open-circuit enables switching of optoelectronic synaptic operation between short-term and long-term plasticity. Furthermore, inspired by transmembrane receptors that connect extracellular and intracellular events, synaptic responses can also be effectively amplified by applying chemical modifications to nanowire surfaces, which tune external and internal charge behaviors. Notably, under varied external electrolyte environments (ion/molecule species and concentrations), our device successfully mimics chemically-regulated synaptic activities and emulates intricate oxidative stress-induced biological phenomena. Essentially, we demonstrate that through the nanowire photoelectrochemical synapse configuration, optoelectronic synapses can be incorporated with chemical-electric behaviors to bridge the gap between classic optoelectronic synapses and biological synapses, providing a promising platform for multifunctional neuromorphic applications.
Collapse
Affiliation(s)
- Xin Liu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Danhao Wang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Chen
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Kang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Shi Fang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanmin Luo
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyang Luo
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Huabin Yu
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Haochen Zhang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Kun Liang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China
| | - Lan Fu
- Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, Australia
| | - Boon S Ooi
- Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, China
| | - Haiding Sun
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Jamali A, Knoerlein R, Mishra DB, Sheikholeslami SA, Woias P, Goldschmidtboeing F. Soft Gripping Fingers Made of Multi-Stacked Dielectric Elastomer Actuators with Backbone Strategy. Biomimetics (Basel) 2024; 9:505. [PMID: 39194484 DOI: 10.3390/biomimetics9080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Soft grippers, a rapidly growing subfield of soft robotics, utilize compliant and flexible materials capable of conforming to various shapes. This feature enables them to exert gentle yet, if required, strong gripping forces. In this study, we elaborate on the material selection and fabrication process of gripping fingers based on the dielectric elastomer actuation technique. We study the effects of mixing the silicone elastomer with a silicone thinner on the performance of the actuators. Inspired by nature, where the motion of end-effectors such as soft limbs or fingers is, in many cases, directed by a stiff skeleton, we utilize backbones for translating the planar actuation into a bending motion. Thus, the finger does not need any rigid frame or pre-stretch, as in many other DEA approaches. The idea and function of the backbone strategy are demonstrated by finite element method simulations with COMSOL Multiphysics® 6.5. The paper describes the full methodology from material choice and characterization, design, and simulation to characterization to enable future developments based on our approach. Finally, we present the performance of these actuators in a gripper demonstrator setup. The developed actuators bend up to 68.3° against gravity, and the gripper fingers hold up to 10.3 g against gravity under an actuation voltage of 8 kV.
Collapse
Affiliation(s)
- Armin Jamali
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Robert Knoerlein
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Dushyant Bhagwan Mishra
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Seyed Alireza Sheikholeslami
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Peter Woias
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Frank Goldschmidtboeing
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110 Freiburg, Germany
- Laboratory for the Design of Microsystems, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
8
|
Shu J, Zhou Z, Liang H, Yang X. Polyimide as a biomedical material: advantages and applications. NANOSCALE ADVANCES 2024; 6:4309-4324. [PMID: 39170974 PMCID: PMC11334982 DOI: 10.1039/d4na00292j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
Polyimides (PIs) are a class of polymers characterized by strong covalent bonds, which offer the advantages of high thermal weight, low weight, good electronic properties and superior mechanical properties. They have been successfully used in the fields of microelectronics, aerospace engineering, nanomaterials, lasers, energy storage and painting. Their biomedical applications have attracted extensive attention, and they have been explored for use as an implantable, detectable, and antibacterial material in recent years. This article summarizes the progress of PI in terms of three aspects: synthesis, properties, and application. First, the synthetic strategies of PI are summarized. Next, the properties of PI as a biological or medical material are analyzed. Finally, the applications of PI in electrodes, biosensors, drug delivery systems, bone tissue replacements, face masks or respirators, and antibacterial materials are discussed. This review provides a comprehensive understanding of the latest progress in PI, thereby providing a basis for developing new potentially promising materials for medical applications.
Collapse
Affiliation(s)
- Junjie Shu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing China
| | - Zhongfu Zhou
- Chongqing Institute of New Energy Storage Materials and Equipment Chongqing China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing China
| |
Collapse
|
9
|
Zhang M, Zhao L, Tian F, Zhao X, Zhang Y, Yang X, Huang W, Yu R. Bionic Artificial Skin Based on Self-Healable Ionogel Composites with Tailored Mechanics and Robust Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405776. [PMID: 38966888 DOI: 10.1002/adma.202405776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.
Collapse
Affiliation(s)
- Manwen Zhang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Lingyu Zhao
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Feng Tian
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xiaojuan Zhao
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ying Zhang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xin Yang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Wei Huang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ran Yu
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
10
|
Wu SJ, Wu J, Kaser SJ, Roh H, Shiferaw RD, Yuk H, Zhao X. A 3D printable tissue adhesive. Nat Commun 2024; 15:1215. [PMID: 38331971 PMCID: PMC10853267 DOI: 10.1038/s41467-024-45147-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Tissue adhesives are promising alternatives to sutures and staples for joining tissues, sealing defects, and immobilizing devices. However, existing adhesives mostly take the forms of glues or hydrogels, which offer limited versatility. We report a direct-ink-write 3D printable tissue adhesive which can be used to fabricate bioadhesive patches and devices with programmable architectures, unlocking new potential for application-specific designs. The adhesive is conformable and stretchable, achieves robust adhesion with wet tissues within seconds, and exhibits favorable biocompatibility. In vivo rat trachea and colon defect models demonstrate the fluid-tight tissue sealing capability of the printed patches, which maintained adhesion over 4 weeks. Moreover, incorporation of a blood-repelling hydrophobic matrix enables the printed patches to seal actively bleeding tissues. Beyond wound closure, the 3D printable adhesive has broad applicability across various tissue-interfacing devices, highlighted through representative proof-of-concept designs. Together, this platform offers a promising strategy toward developing advanced tissue adhesive technologies.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jingjing Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heejung Roh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ruth D Shiferaw
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- SanaHeal, Inc., Cambridge, MA, USA.
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Cui J, Xu R, Dong W, Kaneko T, Chen M, Shi D. Skin-Inspired Patterned Hydrogel with Strain-Stiffening Capability for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48736-48743. [PMID: 37812680 DOI: 10.1021/acsami.3c12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Flexible materials with ionic conductivity and stretchability are indispensable in emerging fields of flexible electronic devices as sensing and protecting layers. However, designing robust sensing materials with skin-like compliance remains challenging because of the contradiction between softness and strength. Herein, inspired by the modulus-contrast hierarchical structure of biological skin, we fabricated a biomimetic hydrogel with strain-stiffening capability by embedding the stiff array of poly(acrylic acid) (PAAc) in the soft polyacrylamide (PAAm) hydrogel. The stress distribution in both stiff and soft domains can be regulated by changing the arrangement of patterns, thus improving the mechanical properties of the patterned hydrogel. As expected, the resulting patterned hydrogel showed its nonlinear mechanical properties, which afforded a high strength of 1.20 MPa while maintaining a low initial Young's modulus of 31.0 kPa. Moreover, the array of PAAc enables the patterned hydrogel to possess protonic conductivity in the absence of additional ionic salts, thus endowing the patterned hydrogel with the ability to serve as a strain sensor for monitoring human motion.
Collapse
Affiliation(s)
- Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruisheng Xu
- Orthopedic Department, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
13
|
Niu W, Tian Q, Liu Z, Liu X. Solvent-Free and Skin-Like Supramolecular Ion-Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On-Skin Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304157. [PMID: 37345560 DOI: 10.1002/adma.202304157] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The development of stable and biocompatible soft ionic conductors, alternatives to hydrogels and ionogels, will open up new avenues for the construction of stretchable electronics. Here, a brand-new design, encapsulating a naturally occurring ionizable compound by a biocompatible polymer via high-density hydrogen bonds, resulting in a solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) that eliminates the dehydration problem of hydrogels and possesses excellent biocompatibility, is reported. The SF-supra-ICE with high ionic conductivity (>3.3 × 10-2 S m-1 ) exhibits skin-like softness and strain-stiffening behaviors, excellent elasticity, breathability, and self-adhesiveness. Importantly, the SF-supra-ICE can be obtained by a simple water evaporation step to solidify the aqueous precursor into a solvent-free nature. Therefore, the aqueous precursor can act as inks to be painted and printed into customized ionic tattoos (I-tattoos) for the construction of multifunctional on-skin bioelectronics. The painted I-tattoos exhibit ultraconformal and seamless contact with human skin, enabling long-term and high-fidelity recording of various electrophysiological signals with extraordinary immunity to motion artifacts. Human-machine interactions are achieved by exploiting the painted I-tattoos to transmit the electrophysiological signals of human beings. Stretchable I-tattoo electrode arrays, manufactured by the printing method, are demonstrated for multichannel digital diagnosis of the health condition of human back muscles and spine.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
14
|
Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nat Commun 2023; 14:163. [PMID: 36631471 PMCID: PMC9834404 DOI: 10.1038/s41467-023-35905-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Functional soft materials, exhibiting multiple types of deformation, have shown their potential/abilities to achieve complicated biomimetic behaviors (soft robots). Inspired by the locomotion of earthworm, which is conducted through the contraction and stretching between body segments, this study proposes a type of one-piece-mold folded diaphragm, consisting of the structure of body segments with radial magnetization property, to achieve large 3D and bi-directional deformation with inside-volume change capability subjected to the low homogeneous magnetically driving field (40 mT). Moreover, the appearance based on the proposed magnetic-driven folded diaphragm is able to be easily customized to desired ones and then implanted into different untethered soft robotic systems as soft drivers. To verify the above points, we design the diaphragm pump providing unique properties of lightweight, powerful output and rapid response, and the soft robot including the bio-earthworm crawling robot and swimming robot inspired by squid to exhibit the flexible and rapid locomotion excited by single homogeneous magnetic fields.
Collapse
|
15
|
Zhang L, Zhang Z, Weisbecker H, Yin H, Liu Y, Han T, Guo Z, Berry M, Yang B, Guo X, Adams J, Xie Z, Bai W. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. SCIENCE ADVANCES 2022; 8:eade0838. [PMID: 36542721 PMCID: PMC9770994 DOI: 10.1126/sciadv.ade0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
DNA and proteins fold in three dimensions (3D) to enable functions that sustain life. Emulation of such folding schemes for functional materials can unleash enormous potential in advancing a wide range of technologies, especially in robotics, medicine, and telecommunication. Here, we report a microfolding strategy that enables formation of 3D morphable microelectronic systems integrated with various functional materials, including monocrystalline silicon, metallic nanomembranes, and polymers. By predesigning folding hosts and configuring folding pathways, 3D microelectronic systems in freestanding forms can transform across various complex configurations with modulated functionalities. Nearly all transitional states of 3D microelectronic systems achieved via the microfolding assembly can be easily accessed and modulated in situ, offering functional versatility and adaptability. Advanced morphable microelectronic systems including a reconfigurable microantenna for customizable telecommunication, a 3D vibration sensor for hand-tremor monitoring, and a bloomable robot for cardiac mapping demonstrate broad utility of these assembly schemes to realize advanced functionalities.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Matt Berry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Binbin Yang
- Department of Electrical and Computer Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Xu Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Jacob Adams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
16
|
Chen J, Zhao L, Zhou K. Multi-Jet Fusion 3D Voxel Printing of Conductive Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205909. [PMID: 36125341 DOI: 10.1002/adma.202205909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/30/2022] [Indexed: 06/15/2023]
Abstract
3D voxel printing enables the fabrication of parts with site-specific materials and properties at voxel-scale resolution, while the current research mainly focuses on the variations in mechanical properties and colors. In this work, the design and fabrication of voxelated conductive elastomers using Multi Jet Fusion 3D voxel printing actualized by a newly developed multifunctional agent (MA) are investigated. The MA, mainly consisting of carbon nanotubes and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, serves as an infrared-absorbing colorant, a reinforcement, and a conductive filler simultaneously. By controlling the drop-on-demand dispensing of the agents on thermoplastic polyurethane powder, the electrical conductivity across a single printed part can be tailored over a wide range from 10-10 to 10-1 S cm-1 at a voxel resolution of ≈100 µm. Assembly-free strain sensors comprising conductive sensing layers and insulating frames are fabricated to demonstrate the capability of the technique in manufacturing all-printed wearable devices.
Collapse
Affiliation(s)
- Jiayao Chen
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lihua Zhao
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- 3D Lab, HP Labs, HP Inc., Palo Alto, CA, 94304, USA
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
17
|
Cui J, Chen J, Ni Z, Dong W, Chen M, Shi D. High-Sensitivity Flexible Sensor Based on Biomimetic Strain-Stiffening Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47148-47156. [PMID: 36205693 DOI: 10.1021/acsami.2c15203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, flexible wearable and implantable electronic devices have attracted enormous interest in biomedical applications. However, current bioelectronic systems have not solved the problem of mechanical mismatch of tissue-electrode interfaces. Therefore, the biomimetic hydrogel with tissue-like mechanical properties is highly desirable for flexible electronic devices. Herein, we propose a strategy to fabricate a biomimetic hydrogel with strain-stiffening property via regional chain entanglements. The strain-stiffening property of the biomimetic hydrogel is realized by embedding highly swollen poly(acrylate sodium) microgels to act as the microregions of dense entanglement in the soft polyacrylamide matrix. In addition, poly(acrylate sodium) microgels can release Na+ ions, endowing hydrogel with electrical signals to serve as strain sensors for detecting different human movements. The resultant sensors own a low Young's modulus (22.61-112.45 kPa), high nominal tensile strength (0.99 MPa), and high sensitivity with a gauge factor up to 6.77 at strain of 300%. Based on its simple manufacture process, well mechanical matching suitability, and high sensitivity, the as-prepared sensor might have great potential for a wide range of large-scale applications such as wearable and implantable electronic devices.
Collapse
Affiliation(s)
- Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Jiwei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Zhongbin Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| |
Collapse
|
18
|
Liu Z, Wang H, Zhou C. Synthesis and Characterization of a Liquid Crystal-Modified Polydimethylsiloxane Rubber with Mechanical Adaptability Based on Chain Extension in the Process of Crosslinking. ACS OMEGA 2022; 7:36590-36597. [PMID: 36278106 PMCID: PMC9583084 DOI: 10.1021/acsomega.2c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The mechanical adaptive material is a kind of functional material that can effectively dissipate energy and suppress the increase of its stress under continuous strain in a large deformation area, which are vital in artificial muscles, connection devices, soft artificial intelligence robots, and other areas. Scientists have been working to broaden the platform of the material's mechanical adaptive platform and improve its mechanical strength by specific structure design. Based on it, we expect to introduce a mechanism of energy dissipation from the molecular chain scale to further improve mechanical adaptability. We developed a liquid crystal-modified polydimethylsiloxane rubber with mechanical adaptability based on chain extension in the process of crosslinking. Results showed that liquid crystal (0.7 mol %)-modified silicone rubber can obviously dissipate energy to achieve mechanical adaptive function, and the energy dissipation ratio of polydimethylsiloxane rubber (MQ), 4-propyl-4'-vinyl-1,1'-bi(cyclohexane)-modified polydimethylsiloxane rubber (3CCV-MQ), and 4-methoxyphenyl-4-(3-butenyloxy) benzoate-modified polydimethylsiloxane rubber (MBB-MQ) gradually decreases from 30 to 24%. Excessive thiol groups of liquid crystal-modified polydimethylsiloxane react with its vinyl group to achieve the chain extension, which significantly improves the mechanical strength from 2.74 to 5.83 MPa and elongation at break from 733 to 1096%. This research offers some new insights into improving the mechanical strength of silicone rubber and is of great significance for the application of the mechanical adaptive material.
Collapse
|
19
|
Zhang H, Shu J, Liu Z, Wu J. High-Performance Crack-Resistant Elastomer with Tunable "J-Shaped" Stress-Strain Behavior Inspired by the Brown Pelican. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22489-22496. [PMID: 35507507 DOI: 10.1021/acsami.2c06646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The gular sac tissue of brown pelican featured by the curvy pattern of fibers has an excellent combination of strain-stiffening behavior and fracture resistance. We develop an embroidery-reinforcement and solvent-welding strategy to fabricate a biomimetic elastomer with similar structure to that of the gular sac tissue. The embroidery reinforcement enables a well-designed biomimetic pattern of aramid fibers, and the solvent welding induces strong interfacial interaction between the aramid fibers and polyurethane matrix. This strategy endows the composite with excellent strain-stiffening behavior, fracture resistance, mechanical strength, and toughness, which are even better than the living prototype. Finite elements analysis reveals that the curvy pattern and strong interfacial interaction are crucial for both the J-shape behavior and the mechanical properties. The facile and robust strategy can be extended to other fibers reinforced polymers and should be promising for development of strong and tough soft materials with "J-shape" behavior.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingheng Shu
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Zhan Liu
- Key Lab for Biomechanical Engineering of Sichuan Province, Sichuan University, Chengdu, 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
20
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|