1
|
Sethi G, Cuma M, Liu F. Excitonic Condensate in Flat Valence and Conduction Bands of Opposite Chirality. PHYSICAL REVIEW LETTERS 2023; 130:186401. [PMID: 37204894 DOI: 10.1103/physrevlett.130.186401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/01/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Excitonic Bose-Einstein condensation (EBEC) has drawn increasing attention recently with the emergence of 2D materials. A general criterion for EBEC, as expected in an excitonic insulator (EI) state, is to have negative exciton formation energies in a semiconductor. Here, using exact diagonalization of a multiexciton Hamiltonian modeled in a diatomic kagome lattice, we demonstrate that the negative exciton formation energies are only a prerequisite but insufficient condition for realizing an EI. By a comparative study between the cases of both conduction and valence flat bands (FBs) versus that of a parabolic conduction band, we further show that the presence and increased FB contribution to exciton formation provide an attractive avenue to stabilize the excitonic condensate, as confirmed by calculations and analyses of multiexciton energies, wave functions, and reduced density matrices. Our results warrant a similar many-exciton analysis for other known and/or new candidates of EIs and demonstrate the FBs of opposite parity as a unique platform for studying exciton physics, paving the way to material realization of spinor BEC and spin superfluidity.
Collapse
Affiliation(s)
- Gurjyot Sethi
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin Cuma
- Center for High Performance Computing, University of Utah, Salt Lake City, Utah 84112, USA
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
2
|
Gong D, Yang J, Hao L, Horak L, Xin Y, Karapetrova E, Strempfer J, Choi Y, Kim JW, Ryan PJ, Liu J. Reconciling Monolayer and Bilayer J_{eff}=1/2 Square Lattices in Hybrid Oxide Superlattice. PHYSICAL REVIEW LETTERS 2022; 129:187201. [PMID: 36374692 DOI: 10.1103/physrevlett.129.187201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The number of atomic layers confined in a two-dimensional structure is crucial for the electronic and magnetic properties. Single-layer and bilayer J_{eff}=1/2 square lattices are well-known examples where the presence of the extra layer turns the XY anisotropy to the c-axis anisotropy. We report on experimental realization of a hybrid SrIrO_{3}/SrTiO_{3} superlattice that integrates monolayer and bilayer square lattices in one layered structure. By synchrotron x-ray diffraction, resonant x-ray magnetic scattering, magnetization, and resistivity measurements, we found that the hybrid superlattice exhibits properties that are distinct from both the single-layer and bilayer systems and cannot be explained by a simple addition of them. In particular, the entire hybrid superlattice orders simultaneously through a single antiferromagnetic transition at temperatures similar to the bilayer system but with all the J_{eff}=1/2 moments mainly pointing in the ab plane similar to the single-layer system. The results show that bringing monolayer and bilayer with orthogonal properties in proximity to each other in a hybrid superlattice structure is a powerful way to stabilize a unique state not obtainable in a uniform structure.
Collapse
Affiliation(s)
- Dongliang Gong
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Junyi Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Lin Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Lukas Horak
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 3, Prague 12116, Czech Republic
| | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Evguenia Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jörg Strempfer
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|