1
|
Bae GY, Chen KW. EEG decoding reveals task-dependent recoding of sensory information in working memory. Neuroimage 2024; 297:120710. [PMID: 38942100 DOI: 10.1016/j.neuroimage.2024.120710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Working memory (WM) supports future behavior by retaining perceptual information obtained in the recent past. The present study tested the hypothesis that WM recodes sensory information in a format that better supports behavioral goals. We recorded EEG while participants performed color delayed-estimation tasks where the colorwheel for the response was either randomly rotated or held fixed across trials. Accordingly, observers had to remember the exact colors in the Rotation condition, whereas they could prepare for a response based on the fixed mapping between the colors and their corresponding locations on the colorwheel in the No-Rotation condition. Results showed that the color reports were faster and more precise in the No-Rotation condition even when exactly the same set of colors were tested in both conditions. To investigate how the color information was maintained in the brain, we decoded the color using a multivariate EEG classification method. The decoding was limited to the stimulus encoding period in the Rotation condition, whereas it continued to be significant during the maintenance period in the No-Rotation condition, indicating that the color information was actively maintained in the condition. Follow-up analyses suggested that the prolonged decoding was not merely driven by the covert shift of attention but rather by the recoding of sensory information into an action-oriented response format. Together, these results provide converging evidence that WM flexibly recodes sensory information depending on the specific task context to optimize subsequent behavioral performance.
Collapse
Affiliation(s)
- Gi-Yeul Bae
- Department of Psychology, Arizona State University, Tempe, 950 S. McAllister Ave., Tempe, AZ 85287, United States.
| | - Kuo-Wei Chen
- Department of Psychology, Arizona State University, Tempe, 950 S. McAllister Ave., Tempe, AZ 85287, United States
| |
Collapse
|
2
|
Yashiro R, Sawayama M, Amano K. Decoding time-resolved neural representations of orientation ensemble perception. Front Neurosci 2024; 18:1387393. [PMID: 39148524 PMCID: PMC11325722 DOI: 10.3389/fnins.2024.1387393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The visual system can compute summary statistics of several visual elements at a glance. Numerous studies have shown that an ensemble of different visual features can be perceived over 50-200 ms; however, the time point at which the visual system forms an accurate ensemble representation associated with an individual's perception remains unclear. This is mainly because most previous studies have not fully addressed time-resolved neural representations that occur during ensemble perception, particularly lacking quantification of the representational strength of ensembles and their correlation with behavior. Here, we conducted orientation ensemble discrimination tasks and electroencephalogram (EEG) recordings to decode orientation representations over time while human observers discriminated an average of multiple orientations. We modeled EEG signals as a linear sum of hypothetical orientation channel responses and inverted this model to quantify the representational strength of orientation ensemble. Our analysis using this inverted encoding model revealed stronger representations of the average orientation over 400-700 ms. We also correlated the orientation representation estimated from EEG signals with the perceived average orientation reported in the ensemble discrimination task with adjustment methods. We found that the estimated orientation at approximately 600-700 ms significantly correlated with the individual differences in perceived average orientation. These results suggest that although ensembles can be quickly and roughly computed, the visual system may gradually compute an orientation ensemble over several hundred milliseconds to achieve a more accurate ensemble representation.
Collapse
Affiliation(s)
- Ryuto Yashiro
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masataka Sawayama
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kaoru Amano
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Kandemir G, Wilhelm SA, Axmacher N, Akyürek EG. Maintenance of color memoranda in activity-quiescent working memory states: Evidence from impulse perturbation. iScience 2024; 27:109565. [PMID: 38617556 PMCID: PMC11015458 DOI: 10.1016/j.isci.2024.109565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/22/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
In the present study, we used an impulse perturbation method to probe working memory maintenance of colors in neurally active and activity-quiescent states, focusing on a set of pre-registered analyses. We analyzed the electroencephalograph (EEG) data of 30 participants who completed a delayed match-to-sample working memory task, in which one of the two items that were presented was retro-cued as task relevant. The analyses revealed that both cued and uncued colors were decodable from impulse-evoked activity, the latter in contrast to previous reports of working memory for orientation gratings. Decoding of colors from oscillations in the alpha band showed that cued items could be decoded therein whereas uncued items could not. Overall, the outcomes suggest that subtle differences exist between the representation of colors, and that of stimuli with spatial properties, but the present results also demonstrate that regardless of their specific neural state, both are accessible through visual impulse perturbation.
Collapse
Affiliation(s)
- Güven Kandemir
- Department of Experimental Psychology, University of Groningen, Groningen 9712 TS, the Netherlands
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, the Netherlands
| | - Sophia A. Wilhelm
- Department of Experimental Psychology, University of Groningen, Groningen 9712 TS, the Netherlands
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Elkan G. Akyürek
- Department of Experimental Psychology, University of Groningen, Groningen 9712 TS, the Netherlands
| |
Collapse
|
4
|
Grootswagers T, Robinson AK, Shatek SM, Carlson TA. Mapping the dynamics of visual feature coding: Insights into perception and integration. PLoS Comput Biol 2024; 20:e1011760. [PMID: 38190390 PMCID: PMC10798643 DOI: 10.1371/journal.pcbi.1011760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/19/2024] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
The basic computations performed in the human early visual cortex are the foundation for visual perception. While we know a lot about these computations, a key missing piece is how the coding of visual features relates to our perception of the environment. To investigate visual feature coding, interactions, and their relationship to human perception, we investigated neural responses and perceptual similarity judgements to a large set of visual stimuli that varied parametrically along four feature dimensions. We measured neural responses using electroencephalography (N = 16) to 256 grating stimuli that varied in orientation, spatial frequency, contrast, and colour. We then mapped the response profiles of the neural coding of each visual feature and their interactions, and related these to independently obtained behavioural judgements of stimulus similarity. The results confirmed fundamental principles of feature coding in the visual system, such that all four features were processed simultaneously but differed in their dynamics, and there was distinctive conjunction coding for different combinations of features in the neural responses. Importantly, modelling of the behaviour revealed that every stimulus feature contributed to perceptual judgements, despite the untargeted nature of the behavioural task. Further, the relationship between neural coding and behaviour was evident from initial processing stages, signifying that the fundamental features, not just their interactions, contribute to perception. This study highlights the importance of understanding how feature coding progresses through the visual hierarchy and the relationship between different stages of processing and perception.
Collapse
Affiliation(s)
- Tijl Grootswagers
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney, Australia
| | - Amanda K. Robinson
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Sophia M. Shatek
- School of Psychology, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
5
|
Wu Y, Mao Y, Feng K, Wei D, Song L. Decoding of the neural representation of the visual RGB color model. PeerJ Comput Sci 2023; 9:e1376. [PMID: 37346564 PMCID: PMC10280385 DOI: 10.7717/peerj-cs.1376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/10/2023] [Indexed: 06/23/2023]
Abstract
RGB color is a basic visual feature. Here we use machine learning and visual evoked potential (VEP) of electroencephalogram (EEG) data to investigate the decoding features of the time courses and space location that extract it, and whether they depend on a common brain cortex channel. We show that RGB color information can be decoded from EEG data and, with the task-irrelevant paradigm, features can be decoded across fast changes in VEP stimuli. These results are consistent with the theory of both event-related potential (ERP) and P300 mechanisms. The latency on time course is shorter and more temporally precise for RGB color stimuli than P300, a result that does not depend on a task-relevant paradigm, suggesting that RGB color is an updating signal that separates visual events. Meanwhile, distribution features are evident for the brain cortex of EEG signal, providing a space correlate of RGB color in classification accuracy and channel location. Finally, space decoding of RGB color depends on the channel classification accuracy and location obtained through training and testing EEG data. The result is consistent with channel power value distribution discharged by both VEP and electrophysiological stimuli mechanisms.
Collapse
Affiliation(s)
- Yijia Wu
- Fudan University, Fudan University, ShangHai, YangPu, China
- Shanghai Key Research Laboratory, Shanghai Key Research Laboratory, ShangHai, PuDong, China
| | - Yanjing Mao
- Fudan University, Fudan University, ShangHai, YangPu, China
| | - Kaiqiang Feng
- Fudan University, Fudan University, ShangHai, YangPu, China
| | - Donglai Wei
- Fudan University, Fudan University, ShangHai, YangPu, China
| | - Liang Song
- Fudan University, Fudan University, ShangHai, YangPu, China
- Shanghai Key Research Laboratory, Shanghai Key Research Laboratory, ShangHai, PuDong, China
| |
Collapse
|
6
|
Chauhan T, Jakovljev I, Thompson LN, Wuerger SM, Martinovic J. Decoding of EEG signals reveals non-uniformities in the neural geometry of colour. Neuroimage 2023; 268:119884. [PMID: 36657691 DOI: 10.1016/j.neuroimage.2023.119884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/04/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
The idea of colour opponency maintains that colour vision arises through the comparison of two chromatic mechanisms, red versus green and yellow versus blue. The four unique hues, red, green, blue, and yellow, are assumed to appear at the null points of these the two chromatic systems. Here we hypothesise that, if unique hues represent a tractable cortical state, they should elicit more robust activity compared to other, non-unique hues. We use a spatiotemporal decoding approach to report that electroencephalographic (EEG) responses carry robust information about the tested isoluminant unique hues within a 100-350 ms window from stimulus onset. Decoding is possible in both passive and active viewing tasks, but is compromised when concurrent high luminance contrast is added to the colour signals. For large hue-differences, the efficiency of hue decoding can be predicted by mutual distance in a nominally uniform perceptual colour space. However, for small perceptual neighbourhoods around unique hues, the encoding space shows pivotal non-uniformities which suggest that anisotropies in neurometric hue-spaces may reflect perceptual unique hues.
Collapse
Affiliation(s)
- Tushar Chauhan
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139 Cambridge MA, USA.
| | - Ivana Jakovljev
- Department of Psychology. Faculty of Philosophy, University of Novi Sad, Serbia
| | | | - Sophie M Wuerger
- Department of Psychology, University of Liverpool, Liverpool, L697ZA, UK
| | - Jasna Martinovic
- School of Psychology, University of Aberdeen, Aberdeen, AB24 3FX, UK; Department of Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|