1
|
Liu Z, Xia H, Chen A. Impaired brain ability of older adults to transit and persist to latent states with well-organized structures at wakeful rest. GeroScience 2025; 47:1761-1776. [PMID: 39361232 PMCID: PMC11979083 DOI: 10.1007/s11357-024-01366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
The intrinsic brain functional network organization continuously changes with aging. By integrating spatial and temporal information, the process of how brain networks temporally reconfigure and remain well-organized spatial structure largely reflects the brain function, thereby holds the potential to capture its age-related declines. In this study, we examined the spatiotemporal brain dynamics from resting-state functional Magnetic Resonance Imaging (fMRI) data of healthy young and older adults using a Hidden Markov Model (HMM). Six brain states were generated by HMM, with the young group showing higher fractional occupancy and mean dwell time in states 1, 3, and 4 (SY1, SY2 and SY3), and the older group in states 2, 5, and 6 (SO1, SO2 and SO3). Importantly, comparisons of transition probabilities revealed that the older group showed a reduced brain ability to transition into states dominated by the younger group, as well as a diminished capacity to persist in them. Moreover, graph analysis revealed that these young-specific states exhibited higher modularity and k-coreness. Collectively, these findings suggested that the older group showed impaired brain ability of both transition into and sustain well spatially organized states. This emphasized that the temporal changes in brain state organization, rather than its static mode, could be a key biomarker for detecting age-related functional decline. These insights may pave the way for targeted interventions aimed at mitigating cognitive decline in the aging population.
Collapse
Affiliation(s)
- Zijin Liu
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, 200082, China
| | - Haishuo Xia
- Faculty of Psychology, Southwest University, Chongqing, 400700, China
| | - Antao Chen
- Faculty of Psychology, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
2
|
Mill RD, Cole MW. Dynamically shifting from compositional to conjunctive brain representations supports cognitive task learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.27.546751. [PMID: 37425922 PMCID: PMC10327096 DOI: 10.1101/2023.06.27.546751] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During cognitive task learning, neural representations must be rapidly constructed for novel task performance, then optimized for robust practiced task performance. How the geometry of neural representations changes to enable this transition from novel to practiced performance remains unknown. We hypothesized that practice involves a shift from compositional representations (task-general activity patterns that can be flexibly reused across tasks) to conjunctive representations (task-specific activity patterns specialized for the current task). Functional MRI during learning of multiple complex tasks substantiated this dynamic shift from compositional to conjunctive representations, which was associated with reduced cross-task interference (via pattern separation) and behavioral improvement. Further, we found that conjunctions originated in subcortex (hippocampus and cerebellum) and slowly spread to cortex, extending multiple memory systems theories to encompass cognitive task learning. The strengthening of conjunctive representations hence serves as a computational signature of learning, reflecting cortical-subcortical dynamics that optimize task representations in the human brain. Highlights Learning shifts multi-task representations from compositional to conjunctive formatsCortical conjunctions uniquely associate with improved behavior and pattern separationThese conjunctions strengthen over separated learning events and index switch costsSubcortical regions are critical for cross-region binding of task rule information.
Collapse
|
3
|
Wang Z, Yang Y, Huang Z, Zhao W, Su K, Zhu H, Yin D. Exploring the transmission of cognitive task information through optimal brain pathways. PLoS Comput Biol 2025; 21:e1012870. [PMID: 40053566 PMCID: PMC11957563 DOI: 10.1371/journal.pcbi.1012870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/18/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Understanding the large-scale information processing that underlies complex human cognition is the central goal of cognitive neuroscience. While emerging activity flow models demonstrate that cognitive task information is transferred by interregional functional or structural connectivity, graph-theory-based models typically assume that neural communication occurs via the shortest path of brain networks. However, whether the shortest path is the optimal route for empirical cognitive information transmission remains unclear. Based on a large-scale activity flow mapping framework, we found that the performance of activity flow prediction with the shortest path was significantly lower than that with the direct path. The shortest path routing was superior to other network communication strategies, including search information, path ensembles, and navigation. Intriguingly, the shortest path outperformed the direct path in activity flow prediction when the physical distance constraint and asymmetric routing contribution were simultaneously considered. This study not only challenges the shortest path assumption through empirical network models but also suggests that cognitive task information routing is constrained by the spatial and functional embedding of the brain network.
Collapse
Affiliation(s)
- Zhengdong Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yifeixue Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Ziyi Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Wanyun Zhao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Kaiqiang Su
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hengcheng Zhu
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dazhi Yin
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
4
|
Kikumoto A, Bhandari A, Shibata K, Badre D. A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection. Nat Commun 2024; 15:8513. [PMID: 39353961 PMCID: PMC11445473 DOI: 10.1038/s41467-024-52777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Flexible action selection requires cognitive control mechanisms capable of mapping the same inputs to different output actions depending on the context. From a neural state-space perspective, this requires a control representation that separates similar input neural states by context. Additionally, for action selection to be robust and time-invariant, information must be stable in time, enabling efficient readout. Here, using EEG decoding methods, we investigate how the geometry and dynamics of control representations constrain flexible action selection in the human brain. Participants performed a context-dependent action selection task. A forced response procedure probed action selection different states in neural trajectories. The result shows that before successful responses, there is a transient expansion of representational dimensionality that separated conjunctive subspaces. Further, the dynamics stabilizes in the same time window, with entry into this stable, high-dimensional state predictive of individual trial performance. These results establish the neural geometry and dynamics the human brain needs for flexible control over behavior.
Collapse
Affiliation(s)
- Atsushi Kikumoto
- Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US.
- RIKEN Center for Brain Science, Wako, Saitama, Japan.
| | - Apoorva Bhandari
- Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US
| | | | - David Badre
- Department of Cognitive and Psychological Sciences, Brown University, Rhode Island, US
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, US
| |
Collapse
|
5
|
Zheng WL, Wu Z, Hummos A, Yang GR, Halassa MM. Rapid context inference in a thalamocortical model using recurrent neural networks. Nat Commun 2024; 15:8275. [PMID: 39333467 PMCID: PMC11436643 DOI: 10.1038/s41467-024-52289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Cognitive flexibility is a fundamental ability that enables humans and animals to exhibit appropriate behaviors in various contexts. The thalamocortical interactions between the prefrontal cortex (PFC) and the mediodorsal thalamus (MD) have been identified as crucial for inferring temporal context, a critical component of cognitive flexibility. However, the neural mechanism responsible for context inference remains unknown. To address this issue, we propose a PFC-MD neural circuit model that utilizes a Hebbian plasticity rule to support rapid, online context inference. Specifically, the model MD thalamus can infer temporal contexts from prefrontal inputs within a few trials. This is achieved through the use of PFC-to-MD synaptic plasticity with pre-synaptic traces and adaptive thresholding, along with winner-take-all normalization in the MD. Furthermore, our model thalamus gates context-irrelevant neurons in the PFC, thus facilitating continual learning. We evaluate our model performance by having it sequentially learn various cognitive tasks. Incorporating an MD-like component alleviates catastrophic forgetting of previously learned contexts and demonstrates the transfer of knowledge to future contexts. Our work provides insight into how biological properties of thalamocortical circuits can be leveraged to achieve rapid context inference and continual learning.
Collapse
Affiliation(s)
- Wei-Long Zheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhongxuan Wu
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Ali Hummos
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guangyu Robert Yang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Altera.AL, Inc., Menlo Park, CA, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Kikumoto A, Shibata K, Nishio T, Badre D. Practice Reshapes the Geometry and Dynamics of Task-tailored Representations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612718. [PMID: 39314386 PMCID: PMC11419051 DOI: 10.1101/2024.09.12.612718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Extensive practice makes task performance more efficient and precise, leading to automaticity. However, theories of automaticity differ on which levels of task representations (e.g., low-level features, stimulus-response mappings, or high-level conjunctive memories of individual events) change with practice, despite predicting the same pattern of improvement (e.g., power law of practice). To resolve this controversy, we built on recent theoretical advances in understanding computations through neural population dynamics. Specifically, we hypothesized that practice optimizes the neural representational geometry of task representations to minimally separate the highest-level task contingencies needed for successful performance. This involves efficiently reaching conjunctive neural states that integrate task-critical features nonlinearly while abstracting over non-critical dimensions. To test this hypothesis, human participants (n = 40) engaged in extensive practice of a simple, context-dependent action selection task over 3 days while recording EEG. During initial rapid improvement in task performance, representations of the highest-level, context-specific conjunctions of task-features were enhanced as a function of the number of successful episodes. Crucially, only enhancement of these conjunctive representations, and not lower-order representations, predicted the power-law improvement in performance. Simultaneously, over sessions, these conjunctive neural states became more stable earlier in time and more aligned, abstracting over redundant task features, which correlated with offline performance gain in reducing switch costs. Thus, practice optimizes the dynamic representational geometry as task-tailored neural states that minimally tesselate the task space, taming their high-dimensionality.
Collapse
Affiliation(s)
- Atsushi Kikumoto
- Department of Cognitive and Psychological Sciences, Brown University Providence, RI, U.S
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | | | | | - David Badre
- Department of Cognitive and Psychological Sciences, Brown University Providence, RI, U.S
- Carney Institute for Brain Science Brown University, Providence, RI, U.S
| |
Collapse
|
7
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Kikumoto A, Bhandari A, Shibata K, Badre D. A Transient High-dimensional Geometry Affords Stable Conjunctive Subspaces for Efficient Action Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.09.544428. [PMID: 37333209 PMCID: PMC10274903 DOI: 10.1101/2023.06.09.544428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Flexible action selection requires cognitive control mechanisms capable of mapping the same inputs to different output actions depending on the context. From a neural state-space perspective, this requires a control representation that separates similar input neural states by context. Additionally, for action selection to be robust and time-invariant, information must be stable in time, enabling efficient readout. Here, using EEG decoding methods, we investigate how the geometry and dynamics of control representations constrain flexible action selection in the human brain. Participants performed a context-dependent action selection task. A forced response procedure probed action selection different states in neural trajectories. The result shows that before successful responses, there is a transient expansion of representational dimensionality that separated conjunctive subspaces. Further, the dynamics stabilizes in the same time window, with entry into this stable, high-dimensional state predictive of individual trial performance. These results establish the neural geometry and dynamics the human brain needs for flexible control over behavior.
Collapse
Affiliation(s)
- Atsushi Kikumoto
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Rhode Island, U.S
- RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Apoorva Bhandari
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Rhode Island, U.S
| | | | - David Badre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Rhode Island, U.S
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, U.S
| |
Collapse
|
9
|
Liu Y, Wang XJ. Flexible gating between subspaces in a neural network model of internally guided task switching. Nat Commun 2024; 15:6497. [PMID: 39090084 PMCID: PMC11294624 DOI: 10.1038/s41467-024-50501-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Behavioral flexibility relies on the brain's ability to switch rapidly between multiple tasks, even when the task rule is not explicitly cued but must be inferred through trial and error. The underlying neural circuit mechanism remains poorly understood. We investigated recurrent neural networks (RNNs) trained to perform an analog of the classic Wisconsin Card Sorting Test. The networks consist of two modules responsible for rule representation and sensorimotor mapping, respectively, where each module is comprised of a circuit with excitatory neurons and three major types of inhibitory neurons. We found that rule representation by self-sustained persistent activity across trials, error monitoring and gated sensorimotor mapping emerged from training. Systematic dissection of trained RNNs revealed a detailed circuit mechanism that is consistent across networks trained with different hyperparameters. The networks' dynamical trajectories for different rules resided in separate subspaces of population activity; the subspaces collapsed and performance was reduced to chance level when dendrite-targeting somatostatin-expressing interneurons were silenced, illustrating how a phenomenological description of representational subspaces is explained by a specific circuit mechanism.
Collapse
Affiliation(s)
- Yue Liu
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
10
|
Gu S, Mattar MG, Tang H, Pan G. Emergence and reconfiguration of modular structure for artificial neural networks during continual familiarity detection. SCIENCE ADVANCES 2024; 10:eadm8430. [PMID: 39058783 PMCID: PMC11277393 DOI: 10.1126/sciadv.adm8430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Advances in artificial intelligence enable neural networks to learn a wide variety of tasks, yet our understanding of the learning dynamics of these networks remains limited. Here, we study the temporal dynamics during learning of Hebbian feedforward neural networks in tasks of continual familiarity detection. Drawing inspiration from network neuroscience, we examine the network's dynamic reconfiguration, focusing on how network modules evolve throughout learning. Through a comprehensive assessment involving metrics like network accuracy, modular flexibility, and distribution entropy across diverse learning modes, our approach reveals various previously unknown patterns of network reconfiguration. We find that the emergence of network modularity is a salient predictor of performance and that modularization strengthens with increasing flexibility throughout learning. These insights not only elucidate the nuanced interplay of network modularity, accuracy, and learning dynamics but also bridge our understanding of learning in artificial and biological agents.
Collapse
Affiliation(s)
- Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
| | - Marcelo G. Mattar
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Huajin Tang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou, China
| | - Gang Pan
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Liu Y, Wang XJ. Flexible gating between subspaces in a neural network model of internally guided task switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553375. [PMID: 37645801 PMCID: PMC10462002 DOI: 10.1101/2023.08.15.553375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Behavioral flexibility relies on the brain's ability to switch rapidly between multiple tasks, even when the task rule is not explicitly cued but must be inferred through trial and error. The underlying neural circuit mechanism remains poorly understood. We investigated recurrent neural networks (RNNs) trained to perform an analog of the classic Wisconsin Card Sorting Test. The networks consist of two modules responsible for rule representation and sensorimotor mapping, respectively, where each module is comprised of a circuit with excitatory neurons and three major types of inhibitory neurons. We found that rule representation by self-sustained persistent activity across trials, error monitoring and gated sensorimotor mapping emerged from training. Systematic dissection of trained RNNs revealed a detailed circuit mechanism that is consistent across networks trained with different hyperparameters. The networks' dynamical trajectories for different rules resided in separate subspaces of population activity; the subspaces collapsed and performance was reduced to chance level when dendrite-targeting somatostatin-expressing interneurons were silenced, illustrating how a phenomenological description of representational subspaces is explained by a specific circuit mechanism.
Collapse
|
12
|
Bernstein-Eliav M, Tavor I. The Prediction of Brain Activity from Connectivity: Advances and Applications. Neuroscientist 2024; 30:367-377. [PMID: 36250457 PMCID: PMC11107130 DOI: 10.1177/10738584221130974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human brain is composed of multiple, discrete, functionally specialized regions that are interconnected to form large-scale distributed networks. Using advanced brain-imaging methods and machine-learning analytical approaches, recent studies have demonstrated that regional brain activity during the performance of various cognitive tasks can be accurately predicted from patterns of task-independent brain connectivity. In this review article, we first present evidence for the predictability of brain activity from structural connectivity (i.e., white matter connections) and functional connectivity (i.e., temporally synchronized task-free activations). We then discuss the implications of such predictions to clinical populations, such as patients diagnosed with psychiatric disorders or neurologic diseases, and to the study of brain-behavior associations. We conclude that connectivity may serve as an infrastructure that dictates brain activity, and we pinpoint several open questions and directions for future research.
Collapse
Affiliation(s)
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Strauss Center for Computational Neuroimaging, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Riveland R, Pouget A. Natural language instructions induce compositional generalization in networks of neurons. Nat Neurosci 2024; 27:988-999. [PMID: 38499855 PMCID: PMC11537972 DOI: 10.1038/s41593-024-01607-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
A fundamental human cognitive feat is to interpret linguistic instructions in order to perform novel tasks without explicit task experience. Yet, the neural computations that might be used to accomplish this remain poorly understood. We use advances in natural language processing to create a neural model of generalization based on linguistic instructions. Models are trained on a set of common psychophysical tasks, and receive instructions embedded by a pretrained language model. Our best models can perform a previously unseen task with an average performance of 83% correct based solely on linguistic instructions (that is, zero-shot learning). We found that language scaffolds sensorimotor representations such that activity for interrelated tasks shares a common geometry with the semantic representations of instructions, allowing language to cue the proper composition of practiced skills in unseen settings. We show how this model generates a linguistic description of a novel task it has identified using only motor feedback, which can subsequently guide a partner model to perform the task. Our models offer several experimentally testable predictions outlining how linguistic information must be represented to facilitate flexible and general cognition in the human brain.
Collapse
Affiliation(s)
- Reidar Riveland
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.
| | - Alexandre Pouget
- Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Badrulhisham F, Pogatzki-Zahn E, Segelcke D, Spisak T, Vollert J. Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav Immun 2024; 115:470-479. [PMID: 37972877 DOI: 10.1016/j.bbi.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Artificial intelligence (AI) is often used to describe the automation of complex tasks that we would attribute intelligence to. Machine learning (ML) is commonly understood as a set of methods used to develop an AI. Both have seen a recent boom in usage, both in scientific and commercial fields. For the scientific community, ML can solve bottle necks created by complex, multi-dimensional data generated, for example, by functional brain imaging or *omics approaches. ML can here identify patterns that could not have been found using traditional statistic approaches. However, ML comes with serious limitations that need to be kept in mind: their tendency to optimise solutions for the input data means it is of crucial importance to externally validate any findings before considering them more than a hypothesis. Their black-box nature implies that their decisions usually cannot be understood, which renders their use in medical decision making problematic and can lead to ethical issues. Here, we present an introduction for the curious to the field of ML/AI. We explain the principles as commonly used methods as well as recent methodological advancements before we discuss risks and what we see as future directions of the field. Finally, we show practical examples of neuroscience to illustrate the use and limitations of ML.
Collapse
Affiliation(s)
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Tamas Spisak
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, Department of Neurology, University Medicine Essen, Essen, Germany
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom; Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
15
|
Bijsterbosch JD, Farahibozorg SR, Glasser MF, Van Essen D, Snyder LH, Woolrich MW, Smith SM. Evaluating functional brain organization in individuals and identifying contributions to network overlap. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2023; 1:10.1162/imag_a_00046. [PMID: 40017584 PMCID: PMC11867625 DOI: 10.1162/imag_a_00046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Individual differences in the spatial organization of resting-state networks have received increased attention in recent years. Measures of individual-specific spatial organization of brain networks and overlapping network organization have been linked to important behavioral and clinical traits and are therefore potential biomarker targets for personalized psychiatry approaches. To better understand individual-specific spatial brain organization, this paper addressed three key goals. First, we determined whether it is possible to reliably estimate weighted (non-binarized) resting-state network maps using data from only a single individual, while also maintaining maximum spatial correspondence across individuals. Second, we determined the degree of spatial overlap between distinct networks, using test-retest and twin data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching, and coupling) as candidate explanations for why networks overlap spatially. To estimate weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO) algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors to supplement optimization for spatial sparsity/independence. Our findings showed that replicable individual-specific estimates of weighted resting-state networks can be derived using high-quality fMRI data within individual subjects. Network organization estimates using only data from each individual subject closely resembled group-informed network estimates (which was not explicitly modeled in our individual-specific analyses), suggesting that cross-subject correspondence was largely maintained. Furthermore, our results confirmed the presence of spatial overlap in network organization, which was replicable across sessions within individuals and in monozygotic twin pairs. Intriguingly, our findings provide evidence that overlap between 2-network pairs is indicative of coupling. These results suggest that regions of network overlap concurrently process information from both contributing networks, potentially pointing to the role of overlapping network organization in the integration of information across multiple brain systems.
Collapse
Affiliation(s)
- Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States
| | | | - Matthew F Glasser
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - David Van Essen
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| |
Collapse
|
16
|
Finn ES, Poldrack RA, Shine JM. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 2023; 623:263-273. [PMID: 37938706 DOI: 10.1038/s41586-023-06670-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) enables non-invasive access to the awake, behaving human brain. By tracking whole-brain signals across a diverse range of cognitive and behavioural states or mapping differences associated with specific traits or clinical conditions, fMRI has advanced our understanding of brain function and its links to both normal and atypical behaviour. Despite this headway, progress in human cognitive neuroscience that uses fMRI has been relatively isolated from rapid advances in other subdomains of neuroscience, which themselves are also somewhat siloed from one another. In this Perspective, we argue that fMRI is well-placed to integrate the diverse subfields of systems, cognitive, computational and clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as an imaging tool, then highlight examples of studies that have successfully used fMRI in each subdomain of neuroscience. We then provide a roadmap for the future advances that will be needed to realize this integrative vision. In this way, we hope to demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in neuroscience.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA.
| | | | - James M Shine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
17
|
Bijsterbosch JD, Farahibozorg SR, Glasser MF, Essen DV, Snyder LH, Woolrich MW, Smith SM. Evaluating functional brain organization in individuals and identifying contributions to network overlap. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558809. [PMID: 37790508 PMCID: PMC10542549 DOI: 10.1101/2023.09.21.558809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Individual differences in the spatial organization of resting state networks have received increased attention in recent years. Measures of individual-specific spatial organization of brain networks and overlapping network organization have been linked to important behavioral and clinical traits and are therefore potential biomarker targets for personalized psychiatry approaches. To better understand individual-specific spatial brain organization, this paper addressed three key goals. First, we determined whether it is possible to reliably estimate weighted (non-binarized) resting state network maps using data from only a single individual, while also maintaining maximum spatial correspondence across individuals. Second, we determined the degree of spatial overlap between distinct networks, using test-retest and twin data. Third, we systematically tested multiple hypotheses (spatial mixing, temporal switching, and coupling) as candidate explanations for why networks overlap spatially. To estimate weighted network organization, we adopt the Probabilistic Functional Modes (PROFUMO) algorithm, which implements a Bayesian framework with hemodynamic and connectivity priors to supplement optimization for spatial sparsity/independence. Our findings showed that replicable individual-specific estimates of weighted resting state networks can be derived using high quality fMRI data within individual subjects. Network organization estimates using only data from each individual subject closely resembled group-informed network estimates (which was not explicitly modeled in our individual-specific analyses), suggesting that cross-subject correspondence was largely maintained. Furthermore, our results confirmed the presence of spatial overlap in network organization, which was replicable across sessions within individuals and in monozygotic twin pairs. Intriguingly, our findings provide evidence that network overlap is indicative of linear additive coupling. These results suggest that regions of network overlap concurrently process information from all contributing networks, potentially pointing to the role of overlapping network organization in the integration of information across multiple brain systems.
Collapse
Affiliation(s)
- Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | - Matthew F Glasser
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - David Van Essen
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), Oxford University, Oxford, United Kingdom
| |
Collapse
|
18
|
Sanchez-Romero R, Ito T, Mill RD, Hanson SJ, Cole MW. Causally informed activity flow models provide mechanistic insight into network-generated cognitive activations. Neuroimage 2023; 278:120300. [PMID: 37524170 PMCID: PMC10634378 DOI: 10.1016/j.neuroimage.2023.120300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Brain activity flow models estimate the movement of task-evoked activity over brain connections to help explain network-generated task functionality. Activity flow models have been shown to accurately generate task-evoked brain activations across a wide variety of brain regions and task conditions. However, these models have had limited explanatory power, given known issues with causal interpretations of the standard functional connectivity measures used to parameterize activity flow models. We show here that functional/effective connectivity (FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. We progress from simple to complex FC measures, with each adding algorithmic details reflecting causal principles. This reflects many neuroscientists' preference for reduced FC measure complexity (to minimize assumptions, minimize compute time, and fully comprehend and easily communicate methodological details), which potentially trades off with causal validity. We start with Pearson correlation (the current field standard) to remain maximally relevant to the field, estimating causal validity across a range of FC measures using simulations and empirical fMRI data. Finally, we apply causal-FC-based activity flow modeling to a dorsolateral prefrontal cortex region (DLPFC), demonstrating distributed causal network mechanisms contributing to its strong activation during a working memory task. Notably, this fully distributed model is able to account for DLPFC working memory effects traditionally thought to rely primarily on within-region (i.e., not distributed) recurrent processes. Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to identify network mechanisms underlying cognitive computations in the human brain.
Collapse
Affiliation(s)
- Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.
| | - Takuya Ito
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Ravi D Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Stephen José Hanson
- Rutgers University Brain Imaging Center (RUBIC), Rutgers University, Newark, NJ 07102, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
19
|
Brynildsen JK, Rajan K, Henderson MX, Bassett DS. Network models to enhance the translational impact of cross-species studies. Nat Rev Neurosci 2023; 24:575-588. [PMID: 37524935 PMCID: PMC10634203 DOI: 10.1038/s41583-023-00720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 08/02/2023]
Abstract
Neuroscience studies are often carried out in animal models for the purpose of understanding specific aspects of the human condition. However, the translation of findings across species remains a substantial challenge. Network science approaches can enhance the translational impact of cross-species studies by providing a means of mapping small-scale cellular processes identified in animal model studies to larger-scale inter-regional circuits observed in humans. In this Review, we highlight the contributions of network science approaches to the development of cross-species translational research in neuroscience. We lay the foundation for our discussion by exploring the objectives of cross-species translational models. We then discuss how the development of new tools that enable the acquisition of whole-brain data in animal models with cellular resolution provides unprecedented opportunity for cross-species applications of network science approaches for understanding large-scale brain networks. We describe how these tools may support the translation of findings across species and imaging modalities and highlight future opportunities. Our overarching goal is to illustrate how the application of network science tools across human and animal model studies could deepen insight into the neurobiology that underlies phenomena observed with non-invasive neuroimaging methods and could simultaneously further our ability to translate findings across species.
Collapse
Affiliation(s)
- Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanaka Rajan
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
20
|
van den Brink RL, Hagena K, Wilming N, Murphy PR, Büchel C, Donner TH. Flexible sensory-motor mapping rules manifest in correlated variability of stimulus and action codes across the brain. Neuron 2023; 111:571-584.e9. [PMID: 36476977 DOI: 10.1016/j.neuron.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Humans and non-human primates can flexibly switch between different arbitrary mappings from sensation to action to solve a cognitive task. It has remained unknown how the brain implements such flexible sensory-motor mapping rules. Here, we uncovered a dynamic reconfiguration of task-specific correlated variability between sensory and motor brain regions. Human participants switched between two rules for reporting visual orientation judgments during fMRI recordings. Rule switches were either signaled explicitly or inferred by the participants from ambiguous cues. We used behavioral modeling to reconstruct the time course of their belief about the active rule. In both contexts, the patterns of correlations between ongoing fluctuations in stimulus- and action-selective activity across visual- and action-related brain regions tracked participants' belief about the active rule. The rule-specific correlation patterns broke down around the time of behavioral errors. We conclude that internal beliefs about task state are instantiated in brain-wide, selective patterns of correlated variability.
Collapse
Affiliation(s)
- Ruud L van den Brink
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Keno Hagena
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niklas Wilming
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter R Murphy
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; Department of Psychology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Christian Büchel
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Tobias H Donner
- Computational Cognitive Neuroscience Section, Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
21
|
Castro MN, Bocaccio H, De Pino G, Sánchez SM, Wainsztein AE, Drucaroff L, Costanzo EY, Crossley NA, Villarreal MF, Guinjoan SM. Abnormal brain network community structure related to psychological stress in schizophrenia. Schizophr Res 2023; 254:42-53. [PMID: 36801513 DOI: 10.1016/j.schres.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
Recent functional imaging studies in schizophrenia consistently report a disruption of brain connectivity. However, most of these studies analyze the brain connectivity during resting state. Since psychological stress is a major factor for the emergence of psychotic symptoms, we sought to characterize the brain connectivity reconfiguration induced by stress in schizophrenia. We tested the hypothesis that an alteration of the brain's integration-segregation dynamic could be the result of patients with schizophrenia facing psychological stress. To this end, we studied the modular organization and the reconfiguration of networks induced by a stress paradigm in forty subjects (twenty patients and twenty controls), thus analyzing the dynamics of the brain in terms of integration and segregation processes by using 3T-fMRI. Patients with schizophrenia did not show statistically significant differences during the control task compared with controls, but they showed an abnormal community structure during stress condition and an under-connected reconfiguration network with a reduction of hub nodes, suggesting a deficit of integration dynamic with a greater compromise of the right hemisphere. These results provide evidence that schizophrenia has a normal response to undemanding stimuli but shows a disruption of brain functional connectivity between key regions involved in stress response, potentially leading to altered functional brain dynamics by reducing integration capacity and showing deficits recruiting right hemisphere regions. This could in turn underlie the hyper-sensitivity to stress characteristic of schizophrenia.
Collapse
Affiliation(s)
- Mariana N Castro
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Hernán Bocaccio
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | - Gabriela De Pino
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Laboratorio de Neuroimágenes, Departamento de Imágenes, Fleni, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina
| | - Stella M Sánchez
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina
| | - Agustina E Wainsztein
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Lucas Drucaroff
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Elsa Y Costanzo
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Departamento de Salud Mental, Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina; Servicio de Psiquiatría, Fleni, Argentina
| | - Nicolás A Crossley
- Departamento de Psiquiatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Mirta F Villarreal
- Grupo de Investigación en Neurociencias Aplicadas a las Alteraciones de la Conducta (Grupo INAAC), Instituto de Neurociencias Fleni-CONICET (INEU), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, UBA, Argentina
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, USA; Department of Psychiatry, Health Sciences Center, Oklahoma University, Tulsa, Oklahoma, USA
| |
Collapse
|
22
|
Palenciano AF, Senoussi M, Formica S, González-García C. Canonical template tracking: Measuring the activation state of specific neural representations. FRONTIERS IN NEUROIMAGING 2023; 1:974927. [PMID: 37555182 PMCID: PMC10406196 DOI: 10.3389/fnimg.2022.974927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/13/2022] [Indexed: 08/10/2023]
Abstract
Multivariate analyses of neural data have become increasingly influential in cognitive neuroscience since they allow to address questions about the representational signatures of neurocognitive phenomena. Here, we describe Canonical Template Tracking: a multivariate approach that employs independent localizer tasks to assess the activation state of specific representations during the execution of cognitive paradigms. We illustrate the benefits of this methodology in characterizing the particular content and format of task-induced representations, comparing it with standard (cross-)decoding and representational similarity analyses. Then, we discuss relevant design decisions for experiments using this analysis approach, focusing on the nature of the localizer tasks from which the canonical templates are derived. We further provide a step-by-step tutorial of this method, stressing the relevant analysis choices for functional magnetic resonance imaging and magneto/electroencephalography data. Importantly, we point out the potential pitfalls linked to canonical template tracking implementation and interpretation of the results, together with recommendations to mitigate them. To conclude, we provide some examples from previous literature that highlight the potential of this analysis to address relevant theoretical questions in cognitive neuroscience.
Collapse
Affiliation(s)
- Ana F. Palenciano
- Mind, Brain, and Behavior Research Center, University of Granada, Granada, Spain
| | - Mehdi Senoussi
- CLLE Lab, CNRS UMR 5263, University of Toulouse, Toulouse, France
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Silvia Formica
- Department of Psychology, Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | | |
Collapse
|
23
|
Hwang K, Shine JM, Cole MW, Sorenson E. Thalamocortical contributions to cognitive task activity. eLife 2022; 11:e81282. [PMID: 36537658 PMCID: PMC9799971 DOI: 10.7554/elife.81282] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Thalamocortical interaction is a ubiquitous functional motif in the mammalian brain. Previously (Hwang et al., 2021), we reported that lesions to network hubs in the human thalamus are associated with multi-domain behavioral impairments in language, memory, and executive functions. Here, we show how task-evoked thalamic activity is organized to support these broad cognitive abilities. We analyzed functional magnetic resonance imaging (MRI) data from human subjects that performed 127 tasks encompassing a broad range of cognitive representations. We first investigated the spatial organization of task-evoked activity and found a basis set of activity patterns evoked to support processing needs of each task. Specifically, the anterior, medial, and posterior-medial thalamus exhibit hub-like activity profiles that are suggestive of broad functional participation. These thalamic task hubs overlapped with network hubs interlinking cortical systems. To further determine the cognitive relevance of thalamic activity and thalamocortical functional connectivity, we built a data-driven thalamocortical model to test whether thalamic activity can be used to predict cortical task activity. The thalamocortical model predicted task-specific cortical activity patterns, and outperformed comparison models built on cortical, hippocampal, and striatal regions. Simulated lesions to low-dimensional, multi-task thalamic hub regions impaired task activity prediction. This simulation result was further supported by profiles of neuropsychological impairments in human patients with focal thalamic lesions. In summary, our results suggest a general organizational principle of how the human thalamocortical system supports cognitive task activity.
Collapse
Affiliation(s)
- Kai Hwang
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
- Department of Psychiatry, University of IowaIowa CityUnited States
| | - James M Shine
- Brain and Mind Center, University of SydneySydneyAustralia
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University-NewarkNewarkUnited States
| | - Evan Sorenson
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Psychiatry, University of IowaIowa CityUnited States
| |
Collapse
|
24
|
Li J, Zaikin A, Zhang X, Chen S. Editorial: Closed-loop iterations between neuroscience and artificial intelligence. Front Syst Neurosci 2022; 16:1002095. [PMID: 36601288 PMCID: PMC9806858 DOI: 10.3389/fnsys.2022.1002095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jinyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Alexey Zaikin
- Institute for Women's Health and Department of Mathematics, University College London, London, United Kingdom,Department of Neurotechnology, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia,Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University, Moscow, Russia,Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Xiaochun Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Shangbin Chen
| |
Collapse
|
25
|
What is episodic memory and how do we use it? Trends Cogn Sci 2022; 26:1059-1061. [PMID: 36335016 DOI: 10.1016/j.tics.2022.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
What are the neural and computational principles that give rise to episodic memory? Although memory is probably the most studied topic in psychology and cognitive neuroscience, most research has focused on learning at the micro-level. I outline the limitations of this approach and propose a 'molar' approach to tackle episodic memory at the scale of life.
Collapse
|