1
|
Qiu YH, Ma PY, Shao WH, Huang CQ, Wen Y, Huang ZY, Luo W, Long L, Peng X, Yu D. Trifluoromethyl Group (CF 3) Induced Regioselective Larock Indole Synthesis from Unsymmetric β-CF 3-1,3-enynes. Org Lett 2025; 27:3217-3224. [PMID: 40126082 DOI: 10.1021/acs.orglett.5c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The indole skeleton exists widely in natural products, pharmaceuticals, and materials. We disclose here a trifluoromethyl group induced regioselective Larock indole synthetic method from unsymmetric 2-CF3-1,3-enynes. The presence of a trifluoromethyl group is determinable for the regioselectivity. Once the CF3 group was replaced with the methyl or phenyl group, a ratio of 1:1 to 1:1.4 isomers were obtained. This strategy features good regioselectivity, broad substrate scope, and high functional group tolerance. The protocol reported here offers an alternative solution to the rare 3,4-functionalization of 2-CF3-1,3-enynes. The products were further transformed to show distinctive reactivity in hydroboration-oxidation and hydro-bromination.
Collapse
Affiliation(s)
- Yan-Hua Qiu
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Pei-Yan Ma
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Wen-Hao Shao
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Chang-Qi Huang
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Yongshun Wen
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Zi-Ying Huang
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Wenjun Luo
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Lipeng Long
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Sciences of Gannan Medical University, Ganzhou 341000, PR China
| | - Daohong Yu
- Optoelectronic Functional Materials Center, Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China
| |
Collapse
|
2
|
Sahoo A, Dutta S, Sahoo AK. A Precise Route to Tetrasubstituted Allyl Amines via Regioselective Dicarbofunctionalization of Masked Propargyl Amines. Org Lett 2024; 26:9746-9751. [PMID: 39506395 DOI: 10.1021/acs.orglett.4c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Allyl amines are vital components in various biologically important molecules and play a significant role in their function. Presently, most methods are geared toward the preparation of di- and trisubstituted allyl amines, leaving a gap for the development of more versatile approaches. We herein describe an approach to yield tetrasubstituted allyl amines through palladium (Pd)-catalyzed regioselective dicarbofunctionalization of masked N-phthalimide-protected propargyl amines. The cationic Pd-intermediate in conjunction with the masked amine exerts collective control for the reaction regioselectivity. This method accommodates a wide range of alkynes, aryl boronic acids, and aryl diazonium salts offering direct access to a wide range of unusual tetrasubstituted allyl amines.
Collapse
Affiliation(s)
- Aradhana Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli 500046, Telangana, India
| |
Collapse
|
3
|
Sun C, Qi T, Rahman FU, Hayashi T, Ming J. Ligand-controlled regiodivergent arylation of aryl(alkyl)alkynes and asymmetric synthesis of axially chiral 9-alkylidene-9,10-dihydroanthracenes. Nat Commun 2024; 15:9307. [PMID: 39468097 PMCID: PMC11519556 DOI: 10.1038/s41467-024-53767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Transition metal-catalyzed addition of organometallics to aryl(alkyl)alkynes has been well known to proceed with the regioselectivity in forming a carbon-carbon bond at the alkyl-substituted carbon (β-addition). Herein, the reverse regiochemistry with high selectivity in giving 1,1-diarylalkenes (α-addition) was realized in the reaction of arylboronic acids with aryl(alkyl)alkynes by use of a rhodium catalyst coordinated with a chiral diene ligand, whereas the arylation of the same alkynes proceeded with the usual regioselectivity (β-addition) in the presence of a rhodium/DM-BINAP catalyst. The regioselectivity can be switched by the choice of ligands on the rhodium catalysts. This reverse regioselectivity also enabled the catalytic asymmetric synthesis of phoenix-like axially chiral alkylidene dihydroanthracenes with high enantioselectivity through an α-addition/1,4-migration/cyclization sequence.
Collapse
Affiliation(s)
- Chao Sun
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Ting Qi
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Faiz-Ur Rahman
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Jialin Ming
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China.
| |
Collapse
|
4
|
Sethi M, Dutta S, Sahoo AK. Regioselective Twofold Annulation of Propargyl Acetates. Org Lett 2024; 26:3224-3229. [PMID: 38564371 DOI: 10.1021/acs.orglett.4c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The regioselective annulation of unsymmetrical alkynes has always been a focused research topic. A Pd-catalyzed double annulation of unsymmetrical alkynes (i.e., yne-acetates) with aryl diazonium salts for the synthesis of substituted naphthalene derivatives is developed. The process addresses intrinsic regioselectivity challenges in the annulations of unsymmetrical alkynes. Mechanistic investigations shed light on the crucial role of the acetate-directing groups in determining the regiochemical reaction outcome.
Collapse
Affiliation(s)
- Manoj Sethi
- School of Chemistry, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Gachibowli, Telangana 500046, India
| |
Collapse
|
5
|
Luan R, Lin P, Li K, Du Y, Su W. Remote-carbonyl-directed sequential Heck/isomerization/C(sp 2)-H arylation of alkenes for modular synthesis of stereodefined tetrasubstituted olefins. Nat Commun 2024; 15:1723. [PMID: 38409273 PMCID: PMC10897343 DOI: 10.1038/s41467-024-46051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Modular and regio-/stereoselective syntheses of all-carbon tetrasubstituted olefins from simple alkene materials remain a challenging project. Here, we demonstrate that a remote-carbonyl-directed palladium-catalyzed Heck/isomerization/C(sp2)-H arylation sequence enables unactivated 1,1-disubstituted alkenes to undergo stereoselective terminal diarylation with aryl iodides, thus offering a concise approach to construct stereodefined tetrasubstituted olefins in generally good yields under mild conditions; diverse carbonyl groups are allowed to act as directing groups, and various aryl groups can be introduced at the desired position simply by changing aryl iodides. The stereocontrol of the protocol stems from the compatibility between the E/Z isomerization and the alkenyl C(sp2)-H arylation, where the vicinal group-directed C(sp2)-H arylation of the Z-type intermediate product thermodynamically drives the reversible E to Z isomerization. Besides, the carbonyl group not only promotes the Pd-catalyzed sequential transformations of unactivated alkenes by weak coordination, but also avoids byproducts caused by other possible β-H elimination.
Collapse
Affiliation(s)
- Runze Luan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ping Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
| | - Kun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, PR China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, PR China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, PR China.
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, PR China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
- College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, PR China.
| |
Collapse
|
6
|
Maity A, Sahoo AK. Copper-Catalyzed Regio- and Stereoselective Hydroarylation of Ynamide. J Org Chem 2024. [PMID: 38170946 DOI: 10.1021/acs.joc.3c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Presented herein is a copper-catalyzed trans-hydroarylation of ynamides. The reaction showcases the assembly of boronic acids across the carbon-carbon triple bond of ynamides. The reaction proceeds under mild conditions offering a complementary approach for the versatile synthesis of multifunctional (E)-α,β-disubstituted enamides. Moreover, the hydroarylation process is highly regio- and stereoselective. The transformation shows a broad scope (30 examples) and tolerates a wide range of labile functional groups. Control experiments provide substantive evidence supporting the mechanistic cycle and the observed selectivity.
Collapse
Affiliation(s)
- Avijit Maity
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
7
|
Sun Z, Dai M, Ding C, Chen S, Chen LA. Regiodivergent and Stereoselective Synthesis of Highly Substituted 1,3-Dienes via Arylative Acyloxy Migration of Propargyl Esters. J Am Chem Soc 2023; 145:18115-18125. [PMID: 37525426 DOI: 10.1021/jacs.3c06253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
We report the first catalyst-controlled regiodivergent method that enables the synthesis of structurally diverse 1,2,3,4-tetrasubstituted conjugated dienes with excellent regio- and stereochemical outcomes from the same set of readily available propargyl esters and diaryliodonium salts. In this diene chemistry, the in situ generated, highly electrophilic aryl-CuIII complex serves not only as a π-Lewis acid catalyst for alkyne activation/acyloxy migration but also as an aryl electrophile equivalent. The competitive arylative 1,2- and 1,3-acyloxy migration patterns are exquisitely dictated by Cu and Au/Cu relay catalyses, respectively, providing a modular and attractive approach to traditionally inaccessible tetrasubstituted 1,3-dienes in a regiodivergent manner. Finally, the synthetic utility of this method is demonstrated by further synthetic derivatization of 1,3-dienes into an array of useful compounds.
Collapse
Affiliation(s)
- Zhimin Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengfu Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chencheng Ding
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiqin Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Beļaunieks R, Puriņš M, Līpiņa RA, Mishnev A, Turks M. 1,3-Difunctionalization of Propargyl Silanes with Concomitant 1,2-Silyl Shift: Synthesis of Allyl Functionalized Vinyl Silanes. Org Lett 2023. [PMID: 37318959 DOI: 10.1021/acs.orglett.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Terminal alkynes with a silyl group at the propargylic position upon activation with electrophiles such as N-bromosuccinimide undergo (E)-selective 1,2-silyl group migration. Subsequently, an allyl cation is formed that is intercepted by an external nucleophile. This approach provides allyl ethers and esters with stereochemically defined vinyl halide and silane handles for further functionalization. The scope of propargyl silanes and electrophile-nucleophile pairs are investigated, and various trisubstituted olefins are prepared in up to 78% yield. The obtained products have been demonstrated to serve as building blocks for transition-metal-catalyzed cross-couplings of vinyl halides, silicon-halogen exchange, and allyl acetate functionalization reactions.
Collapse
Affiliation(s)
- Rūdolfs Beļaunieks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| | - Mikus Puriņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| | - Rebeka Anna Līpiņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena str. 3, Riga LV-1048, Latvia
| |
Collapse
|
9
|
Dutta S, Sahoo AK. Three Component syn-1,2-Arylmethylation of Internal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300610. [PMID: 36701082 DOI: 10.1002/anie.202300610] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
A Pd-catalyzed three-component syn-1,2-arylmethylation of internal alkynes (ynamides/yne-acetates/alkynes) is described. The readily available and bench stable coupling partners iodo-arenes, and methyl boronic acid are successfully used in this coupling strategy to access the methyl-containing tetra-substituted olefins; the scope is broad showing excellent functional-group tolerance. Notably, the transformation is regio- as well as stereoselective. The biologically relevant motifs (BRM) bearing iodo-arenes and ynamides are also used for the late-stage syn-1,2-arylmethylation of alkynes. Aryl-alkylation, aryl-trideuteriomethylation, alkynyl-methylation, and alkenyl-methylation of ynamides are also presented. The Me-substituted alkenes are further transformed into synthetically important β-amino-indenones and α-fluoro-α'-methyl ketones.
Collapse
Affiliation(s)
- Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
10
|
Manna K, Jana R. Palladium-Catalyzed Cross-Electrophile Coupling between Aryl Diazonium Salt and Aryl Iodide/Diaryliodonium Salt in H 2O-EtOH. Org Lett 2023; 25:341-346. [PMID: 36607149 DOI: 10.1021/acs.orglett.2c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report herein a mild highly chemoselective palladium-catalyzed cross-electrophile coupling between readily accessible aromatic diazonium salt and aryl iodide or diaryliodonium salt in water-ethanol (2:1) medium. Mechanistic studies revealed that ethanol is crucial to generate an active Pd(0) catalyst, and the counterion of the diazonium salt renders a cationic Pd(II) species that facilitates subsequent oxidative addition to aryl iodide/diaryliodonium salt. Silver(I) salt was crucial to retain the catalytic activity of palladium, removing the iodide ion as a precipitate.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
11
|
Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. Nat Commun 2023; 14:55. [PMID: 36599820 PMCID: PMC9813127 DOI: 10.1038/s41467-022-35688-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Precise stereocontrol of functionalized alkenes represents a long-standing research topic in organic synthesis. Nevertheless, the development of a catalytic, easily tunable synthetic approach for the stereodivergent synthesis of both E-selective and even more challenging Z-selective highly substituted 1,3-dienes from common substrates remains underexploited. Here, we report a photoredox and nickel dual catalytic strategy for the stereodivergent sulfonylalkenylation of terminal alkynes with vinyl triflates and sodium sulfinates under mild conditions. With a judicious choice of simple nickel catalyst and ligand, this method enables efficient and divergent access to both Z- and E-sulfonyl-1,3-dienes from the same set of simple starting materials. This method features broad substrate scope, good functional compatibility, and excellent chemo-, regio-, and stereoselectivity. Experimental and DFT mechanistic studies offer insights into the observed divergent stereoselectivity controlled by ligands.
Collapse
|
12
|
Chaudhary D, Yadav S, Maurya NK, Kumar D, Ishu K, Kuram MR. Regiodivergent cascade cyclization/alkoxylation of allenamides via N-protecting group driven rearrangement to access indole and indoline derivatives. Chem Commun (Camb) 2022; 58:11300-11303. [PMID: 36124897 DOI: 10.1039/d2cc03174d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild, palladium-catalyzed domino Heck-cyclization/alkoxylation sequence of aryl halide tethered allenamides is described, providing regiodivergent indole and indoline derivatives controlled by the N-protecting group. This room temperature reaction provided a functionalizable olefinic moiety with broad substrate scope. Preliminary mechanistic studies support the rearrangement of an indoline-derived intermediate to indoles with the N-acetyl allenamides forming free (NH) indoles.
Collapse
Affiliation(s)
- Dhananjay Chaudhary
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Suman Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Naveen Kumar Maurya
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Km Ishu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
13
|
Gao HJ, Miao YH, Jia SK, Li N, Xu LP, Wang W, Wang MC, Mei GJ. Azo group-enabled metal- and oxidant-free alkenyl C–H thiolation: Access to stereodefined tetrasubstituted acyclic olefins. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|