1
|
Chao X, Yang Y, Gong W, Zou S, Tu H, Li D, Feng W, Cai H. Leep2A and Leep2B function as a RasGAP complex to regulate macropinosome formation. J Cell Biol 2024; 223:e202401110. [PMID: 38888895 PMCID: PMC11187982 DOI: 10.1083/jcb.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis. However, how Ras signaling is initiated and spatiotemporally regulated during macropinocytosis is not well understood. By using the model system Dictyostelium and a proteomics-based approach to identify regulators of macropinocytosis, we uncovered Leep2, consisting of Leep2A and Leep2B, as a RasGAP complex. The Leep2 complex specifically localizes to emerging macropinocytic cups and nascent macropinosomes, where it modulates macropinosome formation by regulating the activities of three Ras family small GTPases. Deletion or overexpression of the complex, as well as disruption or sustained activation of the target Ras GTPases, impairs macropinocytic activity. Our data reveal the critical role of fine-tuning Ras activity in directing macropinosome formation.
Collapse
Affiliation(s)
- Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weibin Gong
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Tu
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Peking University, Beijing, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
3
|
Shen R, Qin S, Lv Y, Liu D, Ke Q, Shi C, Jiang L, Yang J, Zhou Y. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167060. [PMID: 38354757 DOI: 10.1016/j.bbadis.2024.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.
Collapse
Affiliation(s)
- Rui Shen
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Songyan Qin
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Yunhui Lv
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Dandan Liu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Qingqing Ke
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
4
|
Sheng Y, Li Z, Lin X, Wang L, Zhu H, Su Z, Zhang S. In situ bio-mineralized Mn nanoadjuvant enhances anti-influenza immunity of recombinant virus-like particle vaccines. J Control Release 2024; 368:275-289. [PMID: 38382812 DOI: 10.1016/j.jconrel.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-β. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.
Collapse
Affiliation(s)
- Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuyang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Hao Y, Yang Y, Tu H, Guo Z, Chen P, Chao X, Yuan Y, Wang Z, Miao X, Zou S, Li D, Yang Y, Wu C, Li B, Li L, Cai H. A transcription factor complex in Dictyostelium enables adaptive changes in macropinocytosis during the growth-to-development transition. Dev Cell 2024; 59:645-660.e8. [PMID: 38325371 DOI: 10.1016/j.devcel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Yazhou Hao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Yang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Tu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Zhonglong Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Pengcheng Chen
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoting Chao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Yuan
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimeng Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xilin Miao
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Zou
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Congying Wu
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Huaqing Cai
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Wang X, Cheng J, Shen L, Chen M, Sun K, Li J, Li M, Ma C, Wei L. Rab5c promotes RSV and ADV replication by autophagy in respiratory epithelial cells. Virus Res 2024; 341:199324. [PMID: 38242290 PMCID: PMC10830860 DOI: 10.1016/j.virusres.2024.199324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Respiratory system diseases caused by respiratory viruses are common and exert tremendous pressure on global healthcare system. In our previous studies, we found that Long non-coding RNA NRAV (Lnc NRAV) and its target molecule Rab5c plays a significant role in respiratory virus infection. However, the mechanism by which Rab5c affects virus replication remains unclear. Rab5c, a protein mainly localized on the cell membranes and in early endosomes and phagosomes, participates in endocytosis mediated by clathrin and regulates the fusion of early endosome, maturation of early phagosomes, and autophagy. Therefore, we inferred that Rab5c impacts virus replication, which might be related to endocytosis or autophagy. We selected RSV (respiratory syncytial virus) as a representative enveloped virus and ADV (Adenovirus) as a representative non-enveloped virus to explore the possible mechanism of RSV and ADV replication promoted by Rab5c in A549 cells and in Rab5c-overexpressing mice. Here, we confirmed that the activated Rab5c promotes RSV and ADV replication and the inactivated Rab5c inhibits their replication. However, Rab5c promoting RSV and ADV replication is not mediated by endocytosis rather by autophagy in respiratory epithelial cells. Our study showed that Rab5c upregulates LC3-Ⅱ (microtubule-associated protein 1 light chain 3 beta) protein expression levels by interacting with Beclin1, a key autophagy molecule, which can induce autophagy and promote replication of ADV and RSV. This study enriches the understanding of the interaction between respiratory viruses and Rab5c, providing new insights for virus prevention and treatment.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing Cheng
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Linchao Shen
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Meixi Chen
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Keran Sun
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Jian Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China; Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Miao Li
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China
| | - Lin Wei
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China; Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Zadka Ł, Sochocka M, Hachiya N, Chojdak-Łukasiewicz J, Dzięgiel P, Piasecki E, Leszek J. Endocytosis and Alzheimer's disease. GeroScience 2024; 46:71-85. [PMID: 37646904 PMCID: PMC10828383 DOI: 10.1007/s11357-023-00923-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). Endocytosis plays an important role in a number of cellular processes including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. Based on the results of genetic and biochemical studies, there is a link between neuronal endosomal function and AD pathology. Taking this into account, we can state that in the results of previous research, endolysosomal abnormality is an important cause of neuronal lesions in the brain. Endocytosis is a central pathway involved in the regulation of the degradation of amyloidogenic components. The results of the studies suggest that a correlation between alteration in the endocytosis process and associated protein expression progresses AD. In this article, we discuss the current knowledge about endosomal abnormalities in AD.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Marta Sochocka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| | - Naomi Hachiya
- Shonan Research Center, Central Glass Co., Ltd, Shonan Health Innovation Park 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Chałubińskiego 6a, 50-368, Wroclaw, Poland
| | - Egbert Piasecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże L. Pasteura 10, 50-367, Wroclaw, Poland
| |
Collapse
|
8
|
Putar D, Čizmar A, Chao X, Šimić M, Šoštar M, Ćutić T, Mijanović L, Smolko A, Tu H, Cosson P, Weber I, Cai H, Filić V. IqgC is a potent regulator of macropinocytosis in the presence of NF1 and its loading to macropinosomes is dependent on RasG. Open Biol 2024; 14:230372. [PMID: 38263885 PMCID: PMC10806400 DOI: 10.1098/rsob.230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/26/2023] [Indexed: 01/25/2024] Open
Abstract
RasG is a major regulator of macropinocytosis in Dictyostelium discoideum. Its activity is under the control of an IQGAP-related protein, IqgC, which acts as a RasG-specific GAP (GTPase activating protein). IqgC colocalizes with the active Ras at the macropinosome membrane during its formation and for some time after the cup closure. However, the loss of IqgC induces only a minor enhancement of fluid uptake in axenic cells that already lack another RasGAP, NF1. Here, we show that IqgC plays an important role in the regulation of macropinocytosis in the presence of NF1 by restricting the size of macropinosomes. We further provide evidence that interaction with RasG is indispensable for the recruitment of IqgC to forming macropinocytic cups. We also demonstrate that IqgC interacts with another small GTPase from the Ras superfamily, Rab5A, but is not a GAP for Rab5A. Since mammalian Rab5 plays a key role in early endosome maturation, we hypothesized that IqgC could be involved in macropinosome maturation via its interaction with Rab5A. Although an excessive amount of Rab5A reduces the RasGAP activity of IqgC in vitro and correlates with IqgC dissociation from endosomes in vivo, the physiological significance of the Rab5A-IqgC interaction remains elusive.
Collapse
Affiliation(s)
- Darija Putar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Anja Čizmar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Marija Šimić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tamara Ćutić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lucija Mijanović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Smolko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Hui Tu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Wei YN, Yan CY, Zhao ML, Zhao XH. The role and application of vesicles in triple-negative breast cancer: Opportunities and challenges. Mol Ther Oncolytics 2023; 31:100752. [PMID: 38130701 PMCID: PMC10733704 DOI: 10.1016/j.omto.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Extracellular vesicles (EVs) carry DNA, RNA, protein, and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. Triple-negative breast cancer (TNBC) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the tumor microenvironment via EVs. In this article, we describe the roles of EVs in the tumor immune microenvironment, metabolic microenvironment, and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens, and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.
Collapse
Affiliation(s)
- Ya-Nan Wei
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
10
|
Fan YL, Zhang NY, Hou DY, Hao Y, Zheng R, Yang J, Fan Z, An HW, Wang H. Programmable Peptides Activated Macropinocytosis for Direct Cytosolic Delivery. Adv Healthc Mater 2023; 12:e2301162. [PMID: 37449948 DOI: 10.1002/adhm.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Bioactive macromolecules show great promise for the treatment of various diseases. However, the cytosolic delivery of peptide-based drugs remains a challenging task owing to the existence of multiple intracellular barriers and ineffective endosomal escape. To address these issues, herein, programmable self-assembling peptide vectors are reported to amplify cargo internalization into the cytoplasm through receptor-activated macropinocytosis. Programmable self-assembling peptide vector-active human epidermal growth factor receptor-2 (HER2) signaling induces the receptor-activated macropinocytosis pathway, achieving efficient uptake in tumor cells. Shrinking macropinosomes accelerate the process of assembly dynamics and form nanostructures in the cytoplasm to increase peptide-based cargo accumulation and retention. Inductively coupled plasma mass (ICP-MS) spectrometry quantitative analysis indicates that the Gd delivery efficiency in tumor tissue through the macropinocytosis pathway is improved 2.5-fold compared with that through the use of active targeting molecular delivery. Finally, compared with nanoparticles and active targeting delivery, the delivery of bioactive peptide drugs through the self-assembly of peptide vectors maintains high drug activity (the IC50 decreased twofold) in the cytoplasm and achieves effective inhibition of tumor cell growth. Programmable self-assembling peptide vectors represent a promising platform for the intracellular delivery of diverse bioactive drugs, including molecular drugs, peptides, and biologics.
Collapse
Affiliation(s)
- Yan-Lei Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Da-Yong Hou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Yi Hao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Rui Zheng
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Jia Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, P. R. China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Li D, Yang Y, Lv C, Wang Y, Chao X, Huang J, Singh SP, Yuan Y, Zhang C, Lou J, Gao P, Huang S, Li B, Cai H. GxcM-Fbp17/RacC-WASP signaling regulates polarized cortex assembly in migrating cells via Arp2/3. J Cell Biol 2023; 222:e202208151. [PMID: 37010470 PMCID: PMC10072221 DOI: 10.1083/jcb.202208151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/02/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
The actin-rich cortex plays a fundamental role in many cellular processes. Its architecture and molecular composition vary across cell types and physiological states. The full complement of actin assembly factors driving cortex formation and how their activities are spatiotemporally regulated remain to be fully elucidated. Using Dictyostelium as a model for polarized and rapidly migrating cells, we show that GxcM, a RhoGEF localized specifically in the rear of migrating cells, functions together with F-BAR protein Fbp17, a small GTPase RacC, and the actin nucleation-promoting factor WASP to coordinately promote Arp2/3 complex-mediated cortical actin assembly. Overactivation of this signaling cascade leads to excessive actin polymerization in the rear cortex, whereas its disruption causes defects in cortical integrity and function. Therefore, apart from its well-defined role in the formation of the protrusions at the cell front, the Arp2/3 complex-based actin carries out a previously unappreciated function in building the rear cortical subcompartment in rapidly migrating cells.
Collapse
Affiliation(s)
- Dong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chenglin Lv
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Yingjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoting Chao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Ye Yuan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengyu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jizhong Lou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pu Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Li
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
13
|
Jean S, Nassari S. Regulation of Endosomal Sorting and Maturation by ER-Endosome Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221106046. [PMID: 37366507 PMCID: PMC10243584 DOI: 10.1177/25152564221106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Endosomes are a heterogeneous population of intracellular organelles responsible for sorting, recycling, or transporting internalized materials for degradation. Endosomal sorting and maturation are controlled by a complex interplay of regulators, with RAB GTPases and phosphoinositides playing key roles. In this decade, another layer of regulation surfaced with the role played by membrane contact sites between the endoplasmic reticulum (ER) and endosomes. Specific regulators of ER-endosome contact sites or proteins localized at these sites are emerging as modulators of this complex endosomal ballet. In particular, lipid transfer or recruitment of various complexes and enzymes at ER-endosome contact sites play an active role in endosome sorting, scission, and maturation. In this short review, we focus on studies describing ER-endosome contact sites in these three endosomal processes.
Collapse
Affiliation(s)
- Steve Jean
- Faculté de médecine et des sciences de la santé,
Département d’immunologie et de biologie cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sonya Nassari
- Faculté de médecine et des sciences de la santé,
Département d’immunologie et de biologie cellulaire, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|