1
|
Han C, Zhu M, Liu Y, Yang Y, Cheng J, Li P. Regulation of Vascular Injury and Repair by P21-Activated Kinase 1 and P21-Activated Kinase 2: Therapeutic Potential and Challenges. Biomolecules 2024; 14:1596. [PMID: 39766303 PMCID: PMC11674331 DOI: 10.3390/biom14121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
The PAK (p21-activated kinases) family is a class of intracellular signal transduction protein kinases that regulate various cellular functions, mainly through their interactions with small GTP enzymes. PAK1 and PAK2 in the PAK kinase family are key signal transduction molecules that play important roles in various biological processes, including morphological changes, migration, proliferation, and apoptosis, and are involved in the progression of many diseases. Abnormal expression or dysregulation of PAK1 and PAK2 may be associated with several diseases, including cancer, neurological diseases, etc. The current research mainly focuses on studying the role of PAK and PAK inhibitors in the regulation of cancer progression, but relatively few reports are available that explore their potential role in cardiovascular diseases. Vascular injury and repair are complex processes involved in many cardiovascular conditions, including atherosclerosis, restenosis, and hypertension. Emerging research suggests that PAK1 and PAK2 have pivotal roles in vascular endothelial cell functions, including migration, proliferation, and angiogenesis. These kinases also modulate vascular smooth muscle relaxation, vascular permeability, and structural alterations, which are critical in the development of atherosclerosis and vascular inflammation. By targeting these activities, PAK proteins are essential for both normal vascular physiology and the pathogenesis of vascular diseases, highlighting their potential as therapeutic targets for vascular health. This review focuses on recent studies that offer experimental insights into the mechanisms by which PAK1 and PAK2 regulate the biological processes of vascular injury and repair and the therapeutic potential of the current existing PAK inhibitors in vascular-related diseases. The limitations of treatment with some PAK inhibitors and the ways that future development can overcome these challenges are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Pengyun Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; (C.H.); (M.Z.); (Y.L.); (Y.Y.); (J.C.)
| |
Collapse
|
2
|
Chen T, Ren M, Li Y, Jing Z, Xu X, Liu F, Mo D, Zhang W, Zeng J, Zhang H, Ji P, Yang S. Preliminary study of the homeostatic regulation of osseointegration by nanotube topology. Mater Today Bio 2024; 26:101038. [PMID: 38638704 PMCID: PMC11025008 DOI: 10.1016/j.mtbio.2024.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.
Collapse
Affiliation(s)
- Tao Chen
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - MingXing Ren
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - YuZhou Li
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Zheng Jing
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - XinXin Xu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - FengYi Liu
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - DingQiang Mo
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - WenXue Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Jie Zeng
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - He Zhang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| | - Sheng Yang
- College of Stomatology, Chongqing Medical University, PR China
- Chongqing Key Laboratory of Oral Diseases, PR China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, PR China
| |
Collapse
|
3
|
Liu N, Liu G, Jiang H, Yu J, Jin Y, Wang H. Effect of the Mitogen-Activated Protein Kinase Pathway on the Erastin-Induced Ferroptosis of Molt-4 Cells. DNA Cell Biol 2023. [PMID: 37140570 DOI: 10.1089/dna.2022.0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The role of ferroptosis in human acute lymphoblastic leukemia and its possible molecular mechanisms of action are still unknown. In this study, harvested Molt-4 cells were exposed to different concentrations of erastin, and their proliferation capacity was tested by using the cell counting kit-8 assay. Lipid peroxidation levels were detected through flow cytometry. Mitochondrial alterations were observed through transmission electron microscopy. The expression levels of SLC7A11, glutathione peroxidase 4 (GPX4), and mitogen-activated protein kinase (MAPK) were detected by using quantitative real-time PCR and Western blot analysis. This study found that erastin inhibited the growth of Molt-4 cells. This inhibitory effect could be partially reversed by the ferroptosis inhibitor Ferrostatin-1 and the p38 MAPK inhibitor. The mitochondria of Molt-4 cells treated with erastin shortened and condensed. Compared with those in the control group, the levels of reactive oxygen species and malondialdehyde had increased, whereas the levels of glutathione had decreased in the treatment group. The treatment of Molt-4 cells with erastin decreased the levels of SLC7A11 and GPX4 mRNA and increased the expression levels of p38 MAPK, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase. These findings suggested that erastin caused the ferroptosis of Molt-4 cells. This process may be correlated with the inhibition of the cystine/glutamate antiporter system and GPX4 and the activation of p38 MAPK and ERK1/2.
Collapse
Affiliation(s)
- Nana Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Ge Liu
- Wuhan Center For Disease Control & Prevention, Wuhan, China
| | - Haihong Jiang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Jing Yu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Yunqin Jin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Hong Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Thus YJ, De Rooij MFM, Swier N, Beijersbergen RL, Guikema JEJ, Kersten MJ, Eldering E, Pals ST, Kater AP, Spaargaren M. Inhibition of casein kinase 2 sensitizes mantle cell lymphoma to venetoclax through MCL-1 downregulation. Haematologica 2023; 108:797-810. [PMID: 36226498 PMCID: PMC9973496 DOI: 10.3324/haematol.2022.281668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
BCL-2 family proteins are frequently aberrantly expressed in mantle cell lymphoma (MCL). Recently, the BCL-2-specific inhibitor venetoclax has been approved by the US Food and Drug Administration for chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). In MCL, venetoclax has shown promising efficacy in early clinical trials; however, a significant subset of patients is resistant. By conducting a kinome-centered CRISPR-Cas9 knockout sensitizer screen, we identified casein kinase 2 (CK2) as a major regulator of venetoclax resistance in MCL. Interestingly, CK2 is over-expressed in MCL and high CK2 expression is associated with poor patient survival. Targeting of CK2, either by inducible short hairpin RNA (shRNA)-mediated knockdown of CK2 or by the CK2-inhibitor silmitasertib, did not affect cell viability by itself, but strongly synergized with venetoclax in both MCL cell lines and primary samples, also if combined with ibrutinib. Furthermore, targeting of CK2 reduced MCL-1 levels, which involved impaired MCL-1 translation by inhibition of eIF4F complex assembly, without affecting BCL-2 and BCL-XL expression. Combined, this results in enhanced BCL-2 dependence and, consequently, venetoclax sensitization. In cocultures, targeting of CK2 overcame stroma-mediated venetoclax resistance of MCL cells. Taken together, our findings indicate that targeting of CK2 sensitizes MCL cells to venetoclax through downregulation of MCL-1. These novel insights provide a strong rationale for combining venetoclax with CK2 inhibition as therapeutic strategy for MCL patients.
Collapse
Affiliation(s)
- Yvonne J Thus
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam
| | - Martin F M De Rooij
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam
| | - Nathalie Swier
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands; The NKI Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam
| | - Jeroen E J Guikema
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam
| | - Marie-José Kersten
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam
| | - Eric Eldering
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam
| | - Arnon P Kater
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam, The Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands; Cancer Center Amsterdam (CCA), Cancer Biology and Immunology - Target and Therapy Discovery, Amsterdam.
| |
Collapse
|
5
|
Wang Y, Wang N, Chen Y, Yang Y. Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. J Mater Chem B 2022; 11:99-108. [PMID: 36477803 DOI: 10.1039/d2tb01774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Breast cancer is considered as a worldwide disease due to its high incidence and malignant metastasis. Although numerous techniques have been developed well to conduct breast cancer therapy, the influence of micropattern-induced interfacial heterogeneity on the molecular mechanism and nuclear signalling transduction of carcinogenesis is rarely announced. In this study, PDMS stencil-assisted micropatterns were fabricated on tissue culture plates to manage cell clustering colony by adjusting initial cell seeding density and the size of microholes. The curvature of each microholes was controlled to construct the interfacial heterogeneity of MDA-MB231 cancer cells at the periphery of micropatterned colony. The distinguished focal adhesion (FA) and cytoskeleton distribution at the central and peripheral regions of the cell colony were regulated by heterogeneous properties. The interfacial heterogeneity of FA and cytoskeleton would induce the biased tension force to encourage more ezrin expression at the periphery and further promote DNA synthesis, therefore disclosing a stem-like phenotype in heterogeneous cells. This study will provide a value source of information for the development of micropattern-induced heterogeneity and the interpretation of metastatic mechanism in malignant breast cancer cells.
Collapse
Affiliation(s)
- Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Nana Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yazhou Chen
- Medical 3D Printing center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yingjun Yang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
6
|
Thus YJ, De Rooij MFM, Beijersbergen RL, Spaargaren M. An Unbiased CRISPR-Cas9 Screening Method for the Identification of Positive and Negative Regulatory Proteins of Cell Adhesion. Bio Protoc 2022; 12:e4545. [PMID: 36505024 PMCID: PMC9711945 DOI: 10.21769/bioprotoc.4545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Mature B-cell lymphomas are highly dependent upon the protective lymphoid organ microenvironment for their growth and survival. Targeting integrin-mediated homing and retention of the malignant B cells in the lymphoid organs, using the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, is a highly efficacious FDA-approved therapy for chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström macroglobulinemia (WM). Unfortunately, a significant subset of patients is intrinsically resistant to ibrutinib or will develop resistance upon prolonged treatment. Here, we describe an unbiased functional genomic CRISPR-Cas9 screening method to identify novel proteins involved in B-cell receptor-controlled integrin-mediated adhesion, which provides novel therapeutic targets to overcome ibrutinib resistance. This screening method is highly flexible and can be easily adapted to identify cell adhesion-regulatory proteins and signaling pathways for other stimuli, adhesion molecules, and cell types. Graphical abstract.
Collapse
Affiliation(s)
- Yvonne J. Thus
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
,
Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
,
Cancer Biology and Immunology – Target & Therapy Discovery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Martin F. M. De Rooij
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
,
Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
,
Cancer Biology and Immunology – Target & Therapy Discovery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
,
NKI Robotics and Screening Center and Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
,
Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
,
Cancer Biology and Immunology – Target & Therapy Discovery, Cancer Center Amsterdam (CCA), Amsterdam, The Netherlands
,
*For correspondence:
| |
Collapse
|