1
|
Hoang TN, Wu‐Lu M, Collauto A, Hagedoorn P, Alexandru M, Henschel M, Kordasti S, Mroginski MA, Roessler MM, Ebrahimi KH. The [2Fe-2S] cluster of mitochondrial outer membrane protein mitoNEET has an O 2-regulated nitric oxide access tunnel. FEBS Lett 2025; 599:952-970. [PMID: 39757450 PMCID: PMC11995679 DOI: 10.1002/1873-3468.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
The mitochondrial outer membrane iron-sulphur ([Fe-S]) protein mitoNEET has been extensively studied as a target of the anti-inflammatory and type-2 diabetes drug pioglitazone and as a protein affecting mitochondrial respiratory rate. Despite these extensive past studies, its molecular function has yet to be discovered. Here, we applied an interdisciplinary approach and discovered an explicit nitric oxide (NO) access site to the mitoNEET [2Fe-2S] cluster. We found that O2 and pioglitazone block NO access to the cluster, suggesting a molecular function for the mitoNEET [2Fe-2S] cluster in mitochondrial signal transduction. Our discovery hints at a new pathway via which mitochondria can sense hypoxia through O2 protection of the mitoNEET [2Fe-2S] cluster, a new paradigm in understanding the importance of [Fe-S] clusters for gasotransmitter signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Thao Nghi Hoang
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Department of PharmacyDa Nang University of Medical Technology and PharmacyVietnam
| | - Meritxell Wu‐Lu
- Department of ChemistryTechnical University of BerlinGermany
| | - Alberto Collauto
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR)Imperial College LondonUK
| | - Peter‐Leon Hagedoorn
- Department of BiotechnologyDelft University of TechnologyTU DelftThe Netherlands
| | - Madalina Alexandru
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Comprehensive Cancer CenterKing's College LondonUK
| | - Maike Henschel
- Institute of Pharmaceutical ScienceKing's College LondonUK
- Comprehensive Cancer CenterKing's College LondonUK
| | | | | | - Maxie M. Roessler
- Department of Chemistry and Centre for Pulse EPR Spectroscopy (PEPR)Imperial College LondonUK
| | | |
Collapse
|
2
|
Adak S, Calderone LA, Krueger A, Pandelia ME, Moore BS. Single-Enzyme Conversion of Tryptophan to Skatole and Cyanide Expands the Mechanistic Competence of Diiron Oxidases. J Am Chem Soc 2025; 147:6326-6331. [PMID: 39939147 PMCID: PMC11869266 DOI: 10.1021/jacs.4c14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Skatole is a pungent heterocyclic compound derived from the essential amino acid l-tryptophan by bacteria in the mammalian digestive tract. The four-step anaerobic conversion of tryptophan to skatole is well-established; though, to date, no aerobic counterpart has been reported. Herein, we report the discovery of the oxygen-dependent skatole synthase SktA that single-handedly converts 5-bromo-l-tryptophan to 5-bromoskatole, obviating the need for a multienzyme process. SktA is part of a three-gene biosynthetic gene cluster (BGC) in the cyanobacterium Nostoc punctiforme NIES-2108 and functions as a nonheme diiron enzyme belonging to the heme oxygenase-like domain-containing oxidase (HDO) superfamily. Our detailed biochemical analyses revealed cyanide and bicarbonate as biosynthetic coproducts, while stopped-flow experiments showed the hallmark formation of a substrate-triggered peroxo Fe2(III) intermediate. Overall, this work unravels an alternative pathway for converting tryptophan to skatole while also expanding the functional repertoire of HDO enzymes.
Collapse
Affiliation(s)
- Sanjoy Adak
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Logan A. Calderone
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - August Krueger
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Maria-Eirini Pandelia
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Bradley S. Moore
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Ruszczycky MW, Liu HW. Initiation, Propagation, and Termination in the Chemistry of Radical SAM Enzymes. Biochemistry 2024; 63:3161-3183. [PMID: 39626071 PMCID: PMC11878213 DOI: 10.1021/acs.biochem.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes catalyze radical mediated chemical transformations notable for their diversity. The radical mediated reactions that take place in their catalytic cycles can be characterized with respect to one or more phases of initiation, propagation, and termination. Mechanistic models abound regarding these three phases of catalysis being regularly informed and updated by new discoveries that offer insights into their detailed workings. However, questions continue to be raised that touch on fundamental aspects of their mechanistic enzymology. Radical SAM enzymes are consequently far from fully understood, and this Perspective aims to outline some of the current models of radical SAM chemistry with an emphasis on lines of investigation that remain to be explored.
Collapse
Affiliation(s)
- Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-Wen Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Dziergowska A, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5s 2U synthesis in Gram-positive bacteria. J Bacteriol 2024; 206:e0045223. [PMID: 38551342 PMCID: PMC11025329 DOI: 10.1128/jb.00452-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/09/2024] [Indexed: 04/09/2024] Open
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In bacteria, tRNAGlu, Gln, Asp contains a variety of xnm5s2U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm5s2U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the conversion of cmnm5s2U to mnm5s2U. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the radical Sam superfamily was found to be involved in the synthesis of mnm5s2U in both Bacillus subtilis and Streptococcus mutans. This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm5s2U into mnm5s2U in B. subtilis. Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathway intermediates owing to regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. Although mechanistic details of these newly discovered components are not fully resolved, the occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in Nature.IMPORTANCEThe xnm5s2U modifications found in several tRNAs at the wobble base position are widespread in bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile radical SAM superfamily and is involved in the synthesis of mnm5s2U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
Affiliation(s)
- Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | | | - Colbie Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | - Marko Jörg
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Troy A. Stich
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, CREATE Tower, Singapore
| | | | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| |
Collapse
|
5
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Soualmia F, Cherrier MV, Chauviré T, Mauger M, Tatham P, Guillot A, Guinchard X, Martin L, Amara P, Mouesca JM, Daghmoum M, Benjdia A, Gambarelli S, Berteau O, Nicolet Y. Radical S-Adenosyl-l-Methionine Enzyme PylB: A C-Centered Radical to Convert l-Lysine into (3 R)-3-Methyl-d-Ornithine. J Am Chem Soc 2024; 146:6493-6505. [PMID: 38426440 DOI: 10.1021/jacs.3c03747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based β-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.
Collapse
Affiliation(s)
- Feryel Soualmia
- Université Paris-Saclay, Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Mickael V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Timothée Chauviré
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-DIESE-SyMMES-CAMPE, F-38000 Grenoble, France
| | - Mickaël Mauger
- Université Paris-Saclay, Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Philip Tatham
- Université Paris-Saclay, Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Alain Guillot
- Université Paris-Saclay, Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Jean-Marie Mouesca
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-DIESE-SyMMES-CAMPE, F-38000 Grenoble, France
| | - Meriem Daghmoum
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Alhosna Benjdia
- Université Paris-Saclay, Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Serge Gambarelli
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-DIESE-SyMMES-CAMPE, F-38000 Grenoble, France
| | - Olivier Berteau
- Université Paris-Saclay, Micalis Institute, ChemSyBio, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| |
Collapse
|
7
|
Jaroch M, Sun G, Tsui HCT, Reed C, Sun J, Jörg M, Winkler ME, Rice KC, Stich TA, Dedon PC, Dos Santos PC, de Crécy-Lagard V. Alternate routes to mnm 5 s 2 U synthesis in Gram-positive bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572861. [PMID: 38187551 PMCID: PMC10769405 DOI: 10.1101/2023.12.21.572861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.
Collapse
|
8
|
Omeiri J, Martin L, Usclat A, Cherrier MV, Nicolet Y. Maturation of the [FeFe]-Hydrogenase: Direct Transfer of the (κ 3 -cysteinate)Fe II (CN)(CO) 2 Complex B from HydG to HydE. Angew Chem Int Ed Engl 2023; 62:e202314819. [PMID: 37962296 DOI: 10.1002/anie.202314819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
[FeFe]-hydrogenases efficiently catalyze the reversible oxidation of molecular hydrogen. Their prowess stems from the intricate H-cluster, combining a [Fe4 S4 ] center with a binuclear iron center ([2Fe]H ). In the latter, each iron atom is coordinated by a CO and CN ligand, connected by a CO and an azadithiolate ligand. The synthesis of this active site involves a unique multiprotein assembly, featuring radical SAM proteins HydG and HydE. HydG initiates the transformation of L-tyrosine into cyanide and carbon monoxide to generate complex B, which is subsequently transferred to HydE to continue the biosynthesis of the [2Fe]H -subcluster. Due to its instability, complex B isolation for structural or spectroscopic characterization has been elusive thus far. Nevertheless, the use of a biomimetic analogue of complex B allowed circumvention of the need for the HydG protein during in vitro functional investigations, implying a similar structure for complex B. Herein, we used the HydE protein as a nanocage to encapsulate and stabilize the complex B product generated by HydG. Using X-ray crystallography, we successfully determined its structure at 1.3 Å resolution. Furthermore, we demonstrated that complex B is directly transferred from HydG to HydE, thus not being released into the solution post-synthesis, highlighting a transient interaction between the two proteins.
Collapse
Affiliation(s)
- Juneina Omeiri
- Univ. Grenoble-Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 38000, Grenoble, France
| | - Lydie Martin
- Univ. Grenoble-Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 38000, Grenoble, France
| | - Anthony Usclat
- Univ. Grenoble-Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 38000, Grenoble, France
| | - Mickael V Cherrier
- Univ. Grenoble-Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 38000, Grenoble, France
| | - Yvain Nicolet
- Univ. Grenoble-Alpes, CEA, CNRS, IBS, Metalloproteins Unit, 38000, Grenoble, France
| |
Collapse
|
9
|
Jäger C, Croft AK. If It Is Hard, It Is Worth Doing: Engineering Radical Enzymes from Anaerobes. Biochemistry 2022; 62:241-252. [PMID: 36121716 PMCID: PMC9850924 DOI: 10.1021/acs.biochem.2c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With a pressing need for sustainable chemistries, radical enzymes from anaerobes offer a shortcut for many chemical transformations and deliver highly sought-after functionalizations such as late-stage C-H functionalization, C-C bond formation, and carbon-skeleton rearrangements, among others. The challenges in handling these oxygen-sensitive enzymes are reflected in their limited industrial exploitation, despite what they may deliver. With an influx of structures and mechanistic understanding, the scope for designed radical enzymes to deliver wanted processes becomes ever closer. Combined with new advances in computational methods and workflows for these complex systems, the outlook for an increased use of radical enzymes in future processes is exciting.
Collapse
|