1
|
Ning Y, Yang DB, Yang S, Zhang Y, Saven JG, Murray CB. Aligning the Induced Anisotropy of Isotropic Nanoparticles with Liquid Crystals. J Am Chem Soc 2025; 147:6332-6337. [PMID: 39930598 DOI: 10.1021/jacs.4c16332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Thermotropic liquid crystals (LCs) present opportunities for synergistic interactions with ligand-functionalized nanoparticles (NPs). Understanding the dynamics and structures of ligand-coated NPs in an anisotropic LC environment allows for better design and control of versatile LC-NP hybrid materials. Here, simulations and experiments yield direct evidence that cyanobiphenyl LCs induce anisotropy in the biphenylalkyl ligand shells of spherical NPs. The ellipsoidal NP aligns with the LC director. Magnetic fields can dictate the directional ordering of mesogens and consequently allow control of the orientation of the nonmagnetic NPs. Controlling the alignment and deformation advances the design and engineering of these hybrid nanomaterials.
Collapse
Affiliation(s)
- Yifan Ning
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dai-Bei Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shengsong Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, Upton, New York 11973, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Liu Z, Zagzag Y, Kamien RD, Osuji CO. Director Response of Liquid Crystals in Spatially Varying Magnetic Fields with Antagonistic Anchoring Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70130-70137. [PMID: 39641760 DOI: 10.1021/acsami.4c17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the presence of a magnetic field, a liquid crystal (LC) director can be distorted from a ground state set by a combination of LC elasticity and surface anchoring at any relevant interfaces. Uniform magnetic fields are often used to produce simple LC distortions on demand, but producing more spatially complex distortions is practically challenging. We develop a strategy for the spatially resolved control of the LC director by leveraging field patterns induced by ferromagnetic materials. Patterned magnetic fields are generated from high-permeability ferromagnetic microstructures embedded into nematic liquid crystals (NLCs) to manipulate the LC director's orientation. Each ferromagnetic microstructure produces a unique spatially varying magnetic field. In turn, tuning magnetic field strength in competition with NLC elasticity can pattern a range of spatially complex director configurations. Simulations relate the spatial variation induced in a magnetic field by a ferromagnetic geometry and the resultant director. Our predictive models can inform the inverse design of ferromagnetic microstructures to generate bespoke director patterns. We also link changes in the magnetic field to the migration of elastically driven periodic extinctions in birefringence near the edges of ferromagnetic structures.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yvonne Zagzag
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Wang S, Lipchus EJ, Gharbi MA, Yelleswarapu CS. Polarization Z-Scan Studies Revealing Plasmon Coupling Enhancement Due to Dimer Formation of Gold Nanoparticles in Nematic Liquid Crystals. MICROMACHINES 2023; 14:2206. [PMID: 38138375 PMCID: PMC10746126 DOI: 10.3390/mi14122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
We investigate the plasmon coupling of gold nanoparticle (AuNP) dimers dispersed in a nematic liquid crystal matrix using the polarization z-scan technique. Our experimental setup includes the precise control of incident light polarization through polarization angles of 0°, 45°, and 90°. Two distinct cell orientations are examined: parallel and twisted nematic cells. In parallel-oriented cells, where liquid crystal molecules and AuNPs align with the rubbing direction, we observe a remarkable 2-3-fold increase in the nonlinear absorption coefficient when the polarization of the incident light is parallel to the rubbing direction. Additionally, a linear decrease in the third-order nonlinear absorption coefficient is noted as the polarization angle varies from 0° to 90°. In the case of twisted nematic cells, the NPs do not have any preferred orientation, and the enhancement remains consistent across all polarization angles. These findings conclusively establish that the observed enhancement in the nonlinear absorption coefficient is a direct consequence of plasmon coupling, shedding light on the intricate interplay between plasmonic nanostructures and liquid crystal matrices.
Collapse
Affiliation(s)
| | | | - Mohamed Amine Gharbi
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA; (S.W.); (E.J.L.)
| | - Chandra S. Yelleswarapu
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA; (S.W.); (E.J.L.)
| |
Collapse
|
4
|
Anand A, Zaffalon ML, Cova F, Pinchetti V, Khan AH, Carulli F, Brescia R, Meinardi F, Moreels I, Brovelli S. Optical and Scintillation Properties of Record-Efficiency CdTe Nanoplatelets toward Radiation Detection Applications. NANO LETTERS 2022; 22:8900-8907. [PMID: 36331389 PMCID: PMC9706671 DOI: 10.1021/acs.nanolett.2c02975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Colloidal CdTe nanoplatelets featuring a large absorption coefficient and ultrafast tunable luminescence coupled with heavy-metal-based composition present themselves as highly desirable candidates for radiation detection technologies. Historically, however, these nanoplatelets have suffered from poor emission efficiency, hindering progress in exploring their technological potential. Here, we report the synthesis of CdTe nanoplatelets possessing a record emission efficiency of 9%. This enables us to investigate their fundamental photophysics using ultrafast transient absorption, temperature-controlled photoluminescence, and radioluminescence measurements, elucidating the origins of exciton- and defect-related phenomena under both optical and ionizing excitation. For the first time in CdTe nanoplatelets, we report the cumulative effects of a giant oscillator strength transition and exciton fine structure. Simultaneously, thermally stimulated luminescence measurements reveal the presence of both shallow and deep trap states and allow us to disclose the trapping and detrapping dynamics and their influence on the scintillation properties.
Collapse
Affiliation(s)
- Abhinav Anand
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Francesca Cova
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Valerio Pinchetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | | | - Francesco Carulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, 16163Genova, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Iwan Moreels
- Department
of Chemistry, Ghent University, 9000Ghent, Belgium
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, 16163Genova, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, 16163Genova, Italy
| |
Collapse
|
5
|
ATO/Polyaniline/PbS Nanocomposite as Highly Efficient Photoelectrode for Hydrogen Production from Wastewater with Theoretical Study for the Water Splitting. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5628032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyaniline-assisted deposition of PbS is carried out on antimony tin oxide (ATO) glass for ATO/PANI/PbS composite formation. The deposition of PbS was carried out inside and outside the polymer chains using the ionic adsorption deposition process. Various analyses were conducted to confirm the chemical structure and morphological, optical, and electrical properties of the resulting composite. TEM and SEM analyses demonstrated the spherical shape of PbS particles inside and outside the PANI network with more dark or white color, respectively. Moreover, the ImageJ program confirmed the composite formation. The XRD characterization showed the shifts in the PANI peaks after the composite formation with the appearance of a new additional peak related to PbS nanoparticles. The optical analyses were massively enhanced after the composite formation with more broadening in the Vis region at 630 nm, in which there was more enhancement in the bandgap that reached 1.5 eV. The electrode application in the H2 generation process was carried out from wastewater (sewage water, third treatment) without any additional sacrificing agent. The electrode responded well to light, where the current density (
) changed from 10-6 to 0.13 mA.cm-2 under dark and light, respectively. The electrode had high reproducibility and stability. The numbers of generated H2 moles were 0.1 mmol/cm2.h. The produced
and
were 7.3 kJ/mol and 273.4 J/mol.K, respectively. Finally, the mechanism explains the H2 generation reaction using three-electrode cell.
Collapse
|