1
|
Weber LL, Zhang C, Ochoa I, El-Kebir M. Phertilizer: Growing a clonal tree from ultra-low coverage single-cell DNA sequencing of tumors. PLoS Comput Biol 2023; 19:e1011544. [PMID: 37819942 PMCID: PMC10593221 DOI: 10.1371/journal.pcbi.1011544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/23/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Emerging ultra-low coverage single-cell DNA sequencing (scDNA-seq) technologies have enabled high resolution evolutionary studies of copy number aberrations (CNAs) within tumors. While these sequencing technologies are well suited for identifying CNAs due to the uniformity of sequencing coverage, the sparsity of coverage poses challenges for the study of single-nucleotide variants (SNVs). In order to maximize the utility of increasingly available ultra-low coverage scDNA-seq data and obtain a comprehensive understanding of tumor evolution, it is important to also analyze the evolution of SNVs from the same set of tumor cells. We present Phertilizer, a method to infer a clonal tree from ultra-low coverage scDNA-seq data of a tumor. Based on a probabilistic model, our method recursively partitions the data by identifying key evolutionary events in the history of the tumor. We demonstrate the performance of Phertilizer on simulated data as well as on two real datasets, finding that Phertilizer effectively utilizes the copy-number signal inherent in the data to more accurately uncover clonal structure and genotypes compared to previous methods.
Collapse
Affiliation(s)
- Leah L. Weber
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
| | - Chuanyi Zhang
- Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
| | - Idoia Ochoa
- Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
- Department of Electrical and Electronics Engineering, University of Navarre, Donostia, Spain
| | - Mohammed El-Kebir
- Department of Electrical and Electronics Engineering, University of Navarre, Donostia, Spain
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
2
|
Liu X, Griffiths JI, Bishara I, Liu J, Bild AH, Chang JT. Phylogenetic inference from single-cell RNA-seq data. Sci Rep 2023; 13:12854. [PMID: 37553438 PMCID: PMC10409753 DOI: 10.1038/s41598-023-39995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
Tumors are comprised of subpopulations of cancer cells that harbor distinct genetic profiles and phenotypes that evolve over time and during treatment. By reconstructing the course of cancer evolution, we can understand the acquisition of the malignant properties that drive tumor progression. Unfortunately, recovering the evolutionary relationships of individual cancer cells linked to their phenotypes remains a difficult challenge. To address this need, we have developed PhylinSic, a method that reconstructs the phylogenetic relationships among cells linked to their gene expression profiles from single cell RNA-sequencing (scRNA-Seq) data. This method calls nucleotide bases using a probabilistic smoothing approach and then estimates a phylogenetic tree using a Bayesian modeling algorithm. We showed that PhylinSic identified evolutionary relationships underpinning drug selection and metastasis and was sensitive enough to identify subclones from genetic drift. We found that breast cancer tumors resistant to chemotherapies harbored multiple genetic lineages that independently acquired high K-Ras and β-catenin, suggesting that therapeutic strategies may need to control multiple lineages to be durable. These results demonstrated that PhylinSic can reconstruct evolution and link the genotypes and phenotypes of cells across monophyletic tumors using scRNA-Seq.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.218, Houston, TX, 77030, USA
| | - Jason I Griffiths
- Division of Molecular Pharmacology, Department of Medical Oncology & Clinical Therapeutics, City of Hope, Monrovia, CA, USA
| | - Isaac Bishara
- Division of Molecular Pharmacology, Department of Medical Oncology & Clinical Therapeutics, City of Hope, Monrovia, CA, USA
| | - Jiayi Liu
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.218, Houston, TX, 77030, USA
| | - Andrea H Bild
- Division of Molecular Pharmacology, Department of Medical Oncology & Clinical Therapeutics, City of Hope, Monrovia, CA, USA
| | - Jeffrey T Chang
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.218, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Khozyainova AA, Valyaeva AA, Arbatsky MS, Isaev SV, Iamshchikov PS, Volchkov EV, Sabirov MS, Zainullina VR, Chechekhin VI, Vorobev RS, Menyailo ME, Tyurin-Kuzmin PA, Denisov EV. Complex Analysis of Single-Cell RNA Sequencing Data. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:231-252. [PMID: 37072324 PMCID: PMC10000364 DOI: 10.1134/s0006297923020074] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 03/12/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool for studying the physiology of normal and pathologically altered tissues. This approach provides information about molecular features (gene expression, mutations, chromatin accessibility, etc.) of cells, opens up the possibility to analyze the trajectories/phylogeny of cell differentiation and cell-cell interactions, and helps in discovery of new cell types and previously unexplored processes. From a clinical point of view, scRNA-seq facilitates deeper and more detailed analysis of molecular mechanisms of diseases and serves as a basis for the development of new preventive, diagnostic, and therapeutic strategies. The review describes different approaches to the analysis of scRNA-seq data, discusses the advantages and disadvantages of bioinformatics tools, provides recommendations and examples of their successful use, and suggests potential directions for improvement. We also emphasize the need for creating new protocols, including multiomics ones, for the preparation of DNA/RNA libraries of single cells with the purpose of more complete understanding of individual cells.
Collapse
Affiliation(s)
- Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| | - Anna A Valyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail S Arbatsky
- Laboratory of Artificial Intelligence and Bioinformatics, The Russian Clinical Research Center for Gerontology, Pirogov Russian National Medical University, Moscow, 129226, Russia
- School of Public Administration, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Sergey V Isaev
- Research Institute of Personalized Medicine, National Center for Personalized Medicine of Endocrine Diseases, National Medical Research Center for Endocrinology, Moscow, 117036, Russia
| | - Pavel S Iamshchikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
- Laboratory of Complex Analysis of Big Bioimage Data, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Egor V Volchkov
- Department of Oncohematology, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - Marat S Sabirov
- Laboratory of Bioinformatics and Molecular Genetics, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, 119334, Russia
| | - Viktoria R Zainullina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Vadim I Chechekhin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Rostislav S Vorobev
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Pyotr A Tyurin-Kuzmin
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| |
Collapse
|
4
|
Chen J, Wang X, Ma A, Wang QE, Liu B, Li L, Xu D, Ma Q. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat Commun 2022; 13:6494. [PMID: 36310235 PMCID: PMC9618578 DOI: 10.1038/s41467-022-34277-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
Drug screening data from massive bulk gene expression databases can be analyzed to determine the optimal clinical application of cancer drugs. The growing amount of single-cell RNA sequencing (scRNA-seq) data also provides insights into improving therapeutic effectiveness by helping to study the heterogeneity of drug responses for cancer cell subpopulations. Developing computational approaches to predict and interpret cancer drug response in single-cell data collected from clinical samples can be very useful. We propose scDEAL, a deep transfer learning framework for cancer drug response prediction at the single-cell level by integrating large-scale bulk cell-line data. The highlight in scDEAL involves harmonizing drug-related bulk RNA-seq data with scRNA-seq data and transferring the model trained on bulk RNA-seq data to predict drug responses in scRNA-seq. Another feature of scDEAL is the integrated gradient feature interpretation to infer the signature genes of drug resistance mechanisms. We benchmark scDEAL on six scRNA-seq datasets and demonstrate its model interpretability via three case studies focusing on drug response label prediction, gene signature identification, and pseudotime analysis. We believe that scDEAL could help study cell reprogramming, drug selection, and repurposing for improving therapeutic efficacy.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoying Wang
- Department of Mathematics, Shandong University, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| | - Qi-En Wang
- Department of Radiation Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- Department of Mathematics, Shandong University, Shandong, 250100, China
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|