1
|
Feng D, Geng X, Zuo L, Li Z, Wang L. Radical-Polar Crossover Bicyclization Enables a Modular Synthesis of Saturated Bicyclic Amines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501310. [PMID: 40278825 DOI: 10.1002/advs.202501310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Indexed: 04/26/2025]
Abstract
The rapid assembly of diverse cyclic amines from simple precursors is now considered as an ideal platform with respect to efficiency and sustainability. To date, numerous synthetic methods have been successfully developed however, most of them are limited to a narrow subset of cyclic amines, with variations in ring size often requiring different substrates and distinct synthetic strategies. Furthermore, the "escape-from-Flatland" concept has led chemists to focus on the synthesis of C(sp3)-rich small molecules for potential drug candidates. Herein, the successful realization of a radical-polar crossover bicyclization reaction is reported from easily available cyclopropylamines and substituted alkenes through photoredox catalysis. This approach introduces an innovative methodology for the de novo synthesis of a diverse collection of 4/5-, 5/5-, 6/5-,7/5-, and 5/6-fused saturated bicyclic amines in a systematic and modular manner with excellent diastereoselectivity. This work highlights the efficiency and utility of the photoinduced radical-polar crossover bicyclization, the applicability of which is showcased by excellent functional group tolerance, wide substrate scopes, and simple derivatization reactions.
Collapse
Affiliation(s)
- Dewei Feng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Xiao Geng
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Lingling Zuo
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
| | - Zhifang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| |
Collapse
|
2
|
Feng C, Liu Y, Xiang Z, Cheng X, Wei S, Liu X, Deng Q, Fu Q, Zhang Z. An Organic EnT Photocatalyst 4CzMeBN and the Application in the Synthesis of cis-Fused Azetidines. Chemistry 2025; 31:e202403881. [PMID: 39628344 DOI: 10.1002/chem.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Indexed: 12/12/2024]
Abstract
A powerful EnT photocatalyst 4CzMeBN has been developed and utilized in the synthesis of cis-fused azetidines via dearomative [2+2] cycloaddition under visible light. The photocatalyst 4CzMeBN is a donor-acceptor cyanoarene and features high triplet state energy and long lifetime of triplet state, which would be an alternative to widely used EnT photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6. The photochemical [2+2] cycloaddition provides a facile method to synthesize valuable dihydroisoquinolone-fused azetidines with high efficiency.
Collapse
Affiliation(s)
- Chuan Feng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yilei Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhihui Xiang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiong Cheng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Siping Wei
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Xinran Liu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qinmin Deng
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qiang Fu
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhijie Zhang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, 646000, China
| |
Collapse
|
3
|
Zhao Q, Li Y, Ren Z, Shao YB, Chen L, Li X. Catalytic Asymmetric Reactions of Ketimines and Alkenes via [2 + 2] Cycloaddition: Chemical Reactivity Controlled by Switching a Heteroatom. J Am Chem Soc 2024; 146:32088-32097. [PMID: 39513761 DOI: 10.1021/jacs.4c13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Azetidine units are commonly found in natural products and biologically active drugs. The [2 + 2] cycloaddition of imines and alkenes has been extensively used in the synthesis of such structures, while enantioselective approaches remain elusive. Herein, an efficient B(C6F5)3/chiral phosphoric acid-catalyzed asymmetric [2 + 2] cycloaddition of ketimines and aryl vinyl selenides was presented, delivering valuable chiral azetidines with excellent stereoselectivities (>20:1 dr and up to 96:4 er). What's even more interesting was that when a "Se" atom was switched to an "S" atom, the reaction proceeded through a [2 + 2] cycloaddition/ring-opening cascade process, affording a range of chiral thioacetals with high enantioselectivities (up to 98:2 er), which were also important organic sulfur compounds. Mechanistic experiments, coupled with density functional theory (DFT) calculations, shed light on a mechanism involving stepwise [2 + 2] cycloaddition and ring-opening processes, with the initial alkenylation step identified as crucial for achieving stereoselective control.
Collapse
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ying-Bo Shao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Li Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
4
|
Peng LY, Jin R, Zhang SR, Liu XY, Fang WH, Cui G. Roles of Nonadiabatic Processes, Reaction Mechanism, and Selectivity in Cu-Catalyzed [2 + 2] Photocycloaddition of Norbornene and Acetone to Oxetane. J Org Chem 2024; 89:11334-11346. [PMID: 39094225 DOI: 10.1021/acs.joc.4c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Oxetane has been extensively studied for its applications in medicinal chemistry and as a reactive intermediate in synthesis. Experiments report a Cu-catalyzed [2 + 2] photocycloaddition of acetone and norbornene to oxetane, which is proposed to deviate from the conventional Paternò-Büchi reaction. However, its mechanism at the atomic level is not clear. In this study, we used a combination of multistate complete active space second-order perturbation theory (MS-CASPT2) and density functional theory to systematically investigate the reaction mechanism and elucidate the factors contributing to the diastereomeric selectivity. Initially, the formation of the TpCu(Norb) complex is achieved by strong interaction between tris(pyrazolyl)borate Cu(I) (TpCu) and norbornene in the ground state (S0). Upon photoexcitation, TpCu(Norb) eventually decays to the T1 state, in which TpCu(Norb) attacks acetone to initiate subsequent reactions and produces final endo- or exo-oxetane products. All these reactions initially involve the C-C bond formation in the T1 state thereto leading to a ring-opening intermediate. This intermediate then undergoes a nonradiative transition to the S0 state, producing a five-membered ring intermediate, from which the C-O bond is formed, leading to the experimentally dominant exo-product. In contrast, the endo-oxetane formation requires a rearrangement process after the C-C bond is formed because of the large steric effects. As a consequence, the different reaction pathways generating exo- and endo-products exhibit large differences in the free-energy barriers, which results in a diastereomeric selectivity observed experimentally. Additionally, the nonradiative transition is found to play an important role in facilitating these reaction steps. The present computational study provides valuable mechanistic insights into Cu-catalyzed photocycloaddition reactions.
Collapse
Affiliation(s)
- Ling-Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Jin
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shi-Ru Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Wearing ER, Yeh YC, Terrones GG, Parikh SG, Kevlishvili I, Kulik HJ, Schindler CS. Visible light-mediated aza Paternò-Büchi reaction of acyclic oximes and alkenes to azetidines. Science 2024; 384:1468-1476. [PMID: 38935726 DOI: 10.1126/science.adj6771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
The aza Paternò-Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò-Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light-mediated aza Paternò-Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of epi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity.
Collapse
Affiliation(s)
- Emily R Wearing
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seren G Parikh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Corinna S Schindler
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1 BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver V6T 1Z4 BC, Canada
- BC Cancer, Vancouver V5Z 1G1 BC, Canada
| |
Collapse
|
6
|
Zhao Y, Li X, Homölle SL, Wang B, Ackermann L. Electrochemical assembly of isoxazoles via a four-component domino reaction. Chem Sci 2024; 15:1117-1122. [PMID: 38239685 PMCID: PMC10793645 DOI: 10.1039/d3sc05946d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Multicomponent domino reactions via electrochemical annulations have emerged as a robust strategy for the rapid assembly of heterocyclics. Herein, an electrochemical annulation via a [1 + 2 + 1 + 1] four-component domino reaction was accomplished in a user-friendly undivided cell setup to assemble valuable five-membered isoxazole motifs. Our approach is characterized by a high level functional group tolerance and operational simplicity, avoiding the tedious and time-consuming preparation of pre-functionalized substrates. Detailed mechanistic studies were conducted including isotopic labeling, kinetic studies, cyclic voltammetry (CV) analysis, and intermediate characterization, providing support for a radical pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Key Laboratory of Xin'an Medicine of the Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine Hefei 230038 P. R. China
| | - Xinyue Li
- Key Laboratory of Xin'an Medicine of the Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine Hefei 230038 P. R. China
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry(WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Bin Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine Hefei 230038 P. R. China
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry(WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Institute of Pharmaceutical Chemistry, Anhui Academy of Chinese Medicine Hefei 230038 P. R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry(WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
7
|
Wang W, Brown MK. Photosensitized [4+2]- and [2+2]-Cycloaddition Reactions of N-Sulfonylimines. Angew Chem Int Ed Engl 2023; 62:e202305622. [PMID: 37395414 PMCID: PMC10528476 DOI: 10.1002/anie.202305622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 07/04/2023]
Abstract
The synthesis of polycyclic compounds is of high interest due to the prevalence of these motifs in drugs and natural products. Herein, we report on the stereoselective construction of 3D bicyclic scaffolds and azetidine derivatives by modulation of N-sulfonylimines to achieve either [4+2]- or [2+2]-cycloaddition reactions. The utility of the method was established by further modulation of the product. Mechanistic studies are also included, which support reaction via Dexter energy transfer.
Collapse
Affiliation(s)
- Wang Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401, USA
| |
Collapse
|
8
|
Chang JN, Shi JW, Li Q, Li S, Wang YR, Chen Y, Yu F, Li SL, Lan YQ. Regulation of Redox Molecular Junctions in Covalent Organic Frameworks for H 2 O 2 Photosynthesis Coupled with Biomass Valorization. Angew Chem Int Ed Engl 2023; 62:e202303606. [PMID: 37277319 DOI: 10.1002/anie.202303606] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
H2 O2 photosynthesis coupled with biomass valorization can not only maximize the energy utilization but also realize the production of value-added products. Here, a series of COFs (i.e. Cu3 -BT-COF, Cu3 -pT-COF and TFP-BT-COF) with regulated redox molecular junctions have been prepared to study H2 O2 photosynthesis coupled with furfuryl alcohol (FFA) photo-oxidation to furoic acid (FA). The FA generation efficiency of Cu3 -BT-COF was found to be 575 mM g-1 (conversion ≈100 % and selectivity >99 %) and the H2 O2 production rate can reach up to 187 000 μM g-1 , which is much higher than Cu3 -pT-COF, TFP-BT-COF and its monomers. As shown by theoretical calculations, the covalent coupling of the Cu cluster and the thiazole group can promote charge transfer, substrate activation and FFA dehydrogenation, thus boosting both the kinetics of H2 O2 production and FFA photo-oxidation to increase the efficiency. This is the first report about COFs for H2 O2 photosynthesis coupled with biomass valorization, which might facilitate the exploration of porous-crystalline catalysts in this field.
Collapse
Affiliation(s)
- Jia-Nan Chang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Jing-Wen Shi
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shan Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Yi-Rong Wang
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
9
|
Runemark A, Martos M, Nigríni M, Amombo Noa FM, Öhrström L, Sundén H. Photochemical Access to Substituted β-Lactams and β-Lactones via the Zimmerman-O'Connell-Griffin Rearrangement. Org Lett 2023; 25:5520-5524. [PMID: 37462268 PMCID: PMC10391623 DOI: 10.1021/acs.orglett.3c01990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A photomediated protocol giving facile access to substituted β-lactam and β-lactones is presented. The method realizes, for the first time, the use of the Zimmerman-O'Connell-Griffin (ZOG) rearrangement in [2 + 2] cycloaddition. Products are obtained in high yield with excellent diastereoselectivity under visible light irradiation and under mild reaction conditions.
Collapse
Affiliation(s)
- August Runemark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Mario Martos
- Organic Chemistry Department and Institute of Organic Synthesis (ISO), University of Alicante, ctra. San Vicente del Raspeig s/n, 03690 Alicante, Spain
| | - Martin Nigríni
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
10
|
Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination: Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. J Am Chem Soc 2023. [PMID: 37428820 DOI: 10.1021/jacs.3c03172] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time. The merger of cobalt catalysis and electricity enables the regioselective generation of key carbocationic intermediates, which could directly undergo intramolecular C-N bond formation. The mechanistic investigations including electrochemical kinetic analysis suggest that either the catalyst regeneration by nucleophilic cyclization or the second electrochemical oxidation to access the carbocationic intermediate is involved in the rate-determining step (RDS) of our electrochemical protocol and highlight the ability of electrochemistry in providing ideal means to mediate catalyst oxidation.
Collapse
Affiliation(s)
- Steve H Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ahhyeon Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Osato A, Fujihara T, Shigehisa H. Constructing Four-Membered Heterocycles by Cycloisomerization. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Ayami Osato
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Takashi Fujihara
- Comprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama-Shi 338-8570, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
12
|
Yakubov S, Stockerl WJ, Tian X, Shahin A, Mandigma MJP, Gschwind RM, Barham JP. Benzoates as photosensitization catalysts and auxiliaries in efficient, practical, light-powered direct C(sp 3)-H fluorinations. Chem Sci 2022; 13:14041-14051. [PMID: 36540818 PMCID: PMC9728569 DOI: 10.1039/d2sc05735b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/28/2022] [Indexed: 12/14/2023] Open
Abstract
Of the methods for direct fluorination of unactivated C(sp3)-H bonds, photosensitization of SelectFluor is a promising approach. Although many substrates can be activated with photosensitizing catalysts, issues remain that hamper fluorination of complex molecules. Alcohol- or amine-containing functional groups are not tolerated, fluorination regioselectivity follows factors endogenous to the substrate and cannot be influenced by the catalyst, and reactions are highly air-sensitive. We report that benzoyl groups serve as highly efficient photosensitizers which, in combination with SelectFluor, enable visible light-powered direct fluorination of unactivated C(sp3)-H bonds. Compared to previous photosensitizer architectures, the benzoyls have versatility to function both (i) as a photosensitizing catalyst for simple substrate fluorinations and (ii) as photosensitizing auxiliaries for complex molecule fluorinations that are easily installed and removed without compromising yield. Our auxiliary approach (i) substantially decreases the reaction's induction period, (ii) enables C(sp3)-H fluorination of many substrates that fail under catalytic conditions, (iii) increases kinetic reproducibility, and (iv) promotes reactions to higher yields, in shorter times, on multigram scales, and even under air. Observations and mechanistic studies suggest an intimate 'assembly' of auxiliary and SelectFluor prior/after photoexcitation. The auxiliary allows other EnT photochemistry under air. Examples show how auxiliary placement proximally directs regioselectivity, where previous methods are substrate-directed.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Willibald J Stockerl
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Ruth M Gschwind
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
13
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|