1
|
Li J, Li Z, Xie Y, Cai T, Shin D, Chen C, Mirkin C. Non-Centrosymmetric Single Crystalline Biomolecular Nano-Arrays for Responsive Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408153. [PMID: 39128135 DOI: 10.1002/adma.202408153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Herein, a novel strategy is reported for synthesizing libraries of single crystalline amino acid (AA) nanocrystals with control over size, anisotropy, and polymorphism by leveraging dip-pen nanolithography (DPN) and recrystallization via solvent vapor annealing. The crystals are prepared by first depositing nanoreactors consisting of a solvent with AAs, followed by water vapor-induced recrystallization. This leads to isotropic structures that are non-centrosymmetric with strong piezoelectric (g33 coefficients >1000 mVm N-1), ferroelectric, and non-linear optical properties. However, recrystallizing arrays of isotropic DL-alanine nanodot features with a binary solvent (water and ethanol) leads to arrays of 1D piezoelectric nanorods with their long axis coincident with the polar axis. Moreover, positioning nanoreactors containing AAs (the nanodot features) between micro electrodes leads to capillary formation, making the reactors anisotropic and facilitating piezoelectric nanorod formation between the electrodes. This offers a facile route to device fabrication. These as-fabricated devices respond to ultrasonic stimulation in the form of a piezoelectric response. The technique described herein is significant as it provides a rapid way of investigating non-centrosymmetric nanoscale biocrystals, potentially pivotal for fabricating a new class of stimuli-responsive devices such as sensors, energy harvesters, and stimulators.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Yi Xie
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Tong Cai
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Donghoon Shin
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chaojian Chen
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Chad Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
2
|
Li D, Li Z, Pan C, Sun Y, Zhou J, Yangdong X, Xu X, Liu L, Wang H, Chen Y, Song X, Liu P, Zhou X, Liang SJ, Miao F, Zhai T. Ionic Photovoltaics-in-Memory in van der Waals Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406984. [PMID: 39039978 DOI: 10.1002/adma.202406984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Indexed: 07/24/2024]
Abstract
The photovoltaic effect is gaining growing attention in the optoelectronics field due to its low power consumption, sustainable nature, and high efficiency. However, the photovoltaic effects hitherto reported are hindered by the stringent band-alignment requirement or inversion symmetry-breaking, and are challenging for achieving multifunctional photovoltaic properties (such as reconfiguration, nonvolatility, and so on). Here, a novel ionic photovoltaic effect in centrosymmetric CdSb2Se3Br2 that can overcome these limitations is demonstrated. The photovoltaic effect displays significant anisotropy, with the photocurrent being most apparent along the CdBr2 chains while absent perpendicular to them. Additionally, the device shows electrically-induced nonvolatile photocurrent switching characteristics. The photovoltaic effect is attributed to the modulation of the built-in electric field through the migration of Br ions. Using these unique photovoltaic properties, a highly secure circuit with electrical and optical keys is successfully implemented. The findings not only broaden the understanding of the photovoltaic mechanism, but also provide a new material platform for the development of in-memory sensing and computing devices.
Collapse
Affiliation(s)
- Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen Pan
- Institute of Interdisciplinary of Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yan Sun
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xingjian Yangdong
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxin Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Song
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Pengbin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shi-Jun Liang
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Feng Miao
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Chen T, Chen G, Cao S, Tang X, Li W, Liu C, Gou H, Sun P, Mao Y, Pan Q, Zhang P, Zhu X. Dynamic Addressing Molecular Robot (DAMR): An Effective and Efficient Trial-and-Error Approach for the Analysis of Single Nucleotide Polymorphisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402140. [PMID: 38884120 PMCID: PMC11336946 DOI: 10.1002/advs.202402140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Accurate and efficient molecular recognition plays a crucial role in the fields of molecular detection and diagnostics. Conventional trial-and-error-based molecular recognition approaches have always been challenged in distinguishing minimal differences between targets and non-targets, such as single nucleotide polymorphisms (SNPs) of oligonucleotides. To address these challenges, here, a novel concept of dynamic addressing analysis is proposed. In this concept, by dissecting the regions of the target and creating a corresponding recognizer, it is possible to eliminate the inaccuracy and inefficiency of recognition. To achieve this concept, a Dynamic Addressing Molecular Robot (DAMR), a DNA-based dynamic addressing device is developed which is capable of dynamically locating targets. DAMR is designed to first bind to the conserved region of the target while addressing the specific region dynamically until accurate recognition is achieved. DAMR has provided an approach for analyzing low-resolution targets and has been used for analyzing SNP of miR-196a2 in both cell and serum samples, which has opened new avenues for effective and efficient molecular recognition.
Collapse
Affiliation(s)
- Tianshu Chen
- Clinical Laboratory, Shanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghai200127P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Xiaochen Tang
- Clinical Laboratory, Shanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghai200127P. R. China
| | - Wenxing Li
- Department of Clinical Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072P. R. China
| | - Hongquan Gou
- Department of Clinical Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072P. R. China
| | - Pei Sun
- Center for Molecular Recognition and Biosensing, School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Qiuhui Pan
- Clinical Laboratory, Shanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghai200127P. R. China
| | - Penghui Zhang
- Department of Laboratory MedicineShanghai Pudong New Area People's HospitalShanghai201299P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory MedicineShanghai Tenth People's Hospital of Tongji UniversityShanghai200072P. R. China
| |
Collapse
|
4
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
5
|
Li T, Bandari VK, Schmidt OG. Molecular Electronics: Creating and Bridging Molecular Junctions and Promoting Its Commercialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209088. [PMID: 36512432 DOI: 10.1002/adma.202209088] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/28/2022] [Indexed: 06/02/2023]
Abstract
Molecular electronics is driven by the dream of expanding Moore's law to the molecular level for next-generation electronics through incorporating individual or ensemble molecules into electronic circuits. For nearly 50 years, numerous efforts have been made to explore the intrinsic properties of molecules and develop diverse fascinating molecular electronic devices with the desired functionalities. The flourishing of molecular electronics is inseparable from the development of various elegant methodologies for creating nanogap electrodes and bridging the nanogap with molecules. This review first focuses on the techniques for making lateral and vertical nanogap electrodes by breaking, narrowing, and fixed modes, and highlights their capabilities, applications, merits, and shortcomings. After summarizing the approaches of growing single molecules or molecular layers on the electrodes, the methods of constructing a complete molecular circuit are comprehensively grouped into three categories: 1) directly bridging one-molecule-electrode component with another electrode, 2) physically bridging two-molecule-electrode components, and 3) chemically bridging two-molecule-electrode components. Finally, the current state of molecular circuit integration and commercialization is discussed and perspectives are provided, hoping to encourage the community to accelerate the realization of fully scalable molecular electronics for a new era of integrated microsystems and applications.
Collapse
Affiliation(s)
- Tianming Li
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Vineeth Kumar Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09111, Chemnitz, Germany
- Nanophysics, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
6
|
Nahak BK, Mishra A, Preetam S, Tiwari A. Advances in Organ-on-a-Chip Materials and Devices. ACS APPLIED BIO MATERIALS 2022; 5:3576-3607. [PMID: 35839513 DOI: 10.1021/acsabm.2c00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The organ-on-a-chip (OoC) paves a way for biomedical applications ranging from preclinical to clinical translational precision. The current trends in the in vitro modeling is to reduce the complexity of human organ anatomy to the fundamental cellular microanatomy as an alternative of recreating the entire cell milieu that allows systematic analysis of medicinal absorption of compounds, metabolism, and mechanistic investigation. The OoC devices accurately represent human physiology in vitro; however, it is vital to choose the correct chip materials. The potential chip materials include inorganic, elastomeric, thermoplastic, natural, and hybrid materials. Despite the fact that polydimethylsiloxane is the most commonly utilized polymer for OoC and microphysiological systems, substitute materials have been continuously developed for its advanced applications. The evaluation of human physiological status can help to demonstrate using noninvasive OoC materials in real-time procedures. Therefore, this Review examines the materials used for fabricating OoC devices, the application-oriented pros and cons, possessions for device fabrication and biocompatibility, as well as their potential for downstream biochemical surface alteration and commercialization. The convergence of emerging approaches, such as advanced materials, artificial intelligence, machine learning, three-dimensional (3D) bioprinting, and genomics, have the potential to perform OoC technology at next generation. Thus, OoC technologies provide easy and precise methodologies in cost-effective clinical monitoring and treatment using standardized protocols, at even personalized levels. Because of the inherent utilization of the integrated materials, employing the OoC with biomedical approaches will be a promising methodology in the healthcare industry.
Collapse
Affiliation(s)
- Bishal Kumar Nahak
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Subham Preetam
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| |
Collapse
|