1
|
Gao B, Gong Y, Zhang Z, Liu Q, Yin C, Wei M, Wang Y. Turing-Structured Covalent Organic Framework Membranes for Fast and Precise Peptide Separations. Angew Chem Int Ed Engl 2025:e202503090. [PMID: 40329782 DOI: 10.1002/anie.202503090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/08/2025]
Abstract
Turing structures have emerged as promising features for separation membranes, enabling significantly enhanced water permeation due to their ultra-permeable internal cavities. So far, Turing structures are constrained by the highly cross-linked and heterogeneous porosities, impeding them from the application of molecular separations requiring loose but regular pore structures. This work reports a covalent organic frameworks (COFs) membrane with nanoscale striped Turing structures for fast and precise molecular separations. Porous and hydrophilic modulation layers based on metal-polyphenol chemistry are constructed on polymeric substrates, which are capable of enhancing the uptake and controlled release of the activator of amines during synthesis. The appropriately reduced diffusion rate triggers the phenomenon of "local activation and lateral inhibition" arising from thermodynamic instability, creating Turing structures with externally striped and internally cavitated architectures. The Turing-type COF membranes exhibit a water permeance of 45.0 L m-2 h-1 bar-1, which is approximately 13 times greater than the non-Turing membranes, and an ultrahigh selectivity of up to 638 for two model peptides. This work demonstrates the feasibility that Turing structures with ultra-permeable internal cavities can be created in COF membranes and underscores their superiority in molecular separations, including but not limited to high-value pharmaceuticals.
Collapse
Affiliation(s)
- Bingjie Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Youxin Gong
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Zhe Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Qinghua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Congcong Yin
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, and College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, P.R. China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, P.R. China
| |
Collapse
|
2
|
Peng K, Wu Z, Liu X, Yang J, Guan Z. Suppressing Se Vacancies in Sb 2Se 3 Photocathode by In Situ Annealing with Moderate Se Vapor Pressure for Efficient Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406035. [PMID: 39449205 DOI: 10.1002/smll.202406035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Sb2Se3 emerges as a promising material for solar energy conversion devices. Unfortunately, the common deep-level defect VSe (selenium vacancy) in Sb2Se3 results in a low solar conversion efficiency. The post selenization process has been widely adopted for suppressing VSe. However, the effect of selenization on suppressing VSe is often compromised and even more VSe are induced due to defect-correlation. Herein, high-quality Sb2Se3 films are prepared using an unconventional selenization process, with precisely regulating in situ annealing Se vapor pressure. It is found that moderate Se vapor pressure annealing can efficiently suppress VSe by overcoming defect-correlation, as well as promotes grain growth and forms a better heterojunction band alignment. Consequently, the Sb2Se3 photocathode shows a high-level photocurrent of 19.5 mA cm-2 at 0 VRHE, an onset potential of 0.40 VRHE and a half-cell solar-to-hydrogen conversion efficiency of 1.9%, owing to the inhibited charge recombination, excellent charge transport and interface charge extraction. This work provides a significant insight to suppress deep-level defect VSe by adjusting Se vapor pressure for efficient Sb2Se3 photocathode.
Collapse
Affiliation(s)
- Kunyuan Peng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zekai Wu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Xinsheng Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, Henan, 475004, China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Zhongjie Guan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Institute of Nanoscience and Engineering, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
3
|
Yang F, Guo J, Han C, Huang J, Zhou Z, Sun SP, Zhang Y, Shao L. Turing covalent organic framework membranes via heterogeneous nucleation synthesis for organic solvent nanofiltration. SCIENCE ADVANCES 2024; 10:eadr9260. [PMID: 39661688 PMCID: PMC11633759 DOI: 10.1126/sciadv.adr9260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Although covalent organic frameworks (COFs) demonstrate notable potential for developing advanced separation membranes, contemporary COF membranes still lack controlled stacking and highly efficient sieving. Here, Turing-architecture COF membranes were constructed by engineering a reaction-diffusion assembly process via heterogeneous nucleation synthesis with tannic acid (TA). TA covalently binds with amine monomers to form a composite precursor with increased reactivity and decreased diffusivity. This altered the pathway of Schiff base reactions with aldehyde monomers, fulfilling suitable reaction-diffusion conditions, and ultimately formed the labyrinthine stripe or spot-patterned Turing COF film with controlled stacking and uniform pore structure. This endows our COF membrane with highly efficient molecule sieving ability for organic solvent nanofiltration while exhibiting a flux that is 621% greater than that of commercial membranes. Thus, this study provides a paradigm for the in situ synthesis of highly efficient COF membranes for diversely sustainable separations.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Jing Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Chengzhe Han
- School of Astronautics, Harbin Institute of Technology, Harbin 150001, PR China
| | - Junhui Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Zhiwei Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Suzhou Future Membrane Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yanqiu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
4
|
Saha S, Maity D, De D, Khan GG, Mandal K. Graphene Quantum Dots as Hole Extraction and Transfer Layer Empowering Solar Water Splitting of Catalyst-Coupled Zinc Ferrite Nanorods. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28441-28451. [PMID: 38772860 DOI: 10.1021/acsami.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Despite the narrow band gap energy, the performance of zinc ferrite (ZnFe2O4) as a photoharvester for solar-driven water splitting is significantly hindered due to its sluggish charge transfer and severe charge recombination. This work reports the fabrication of a hybrid nanostructured hydrogenated ZnFe2O4 (ZFO) photoanode with enhanced photoelectrochemical water-oxidation activity through coupling N-doped graphene quantum dots (GQDs) as a hole transfer layer and Co-Pi as a catalyst. The GQDs not only reduce the surface-mediated nonradiative electron-hole pair recombination but also induce a built-in interfacial electric field leading to a favorable band alignment at the ZFO/GQDs interface, helping rapid photogenerated hole separation and serving as a conducting hole transfer highway, improve the hole transportation into the Co-Pi catalyst for enhanced water oxidation reaction kinetics. The optimized ZFO/GQD/Co-Pi hybrid photoanode delivers a 23-fold photocurrent enhancement at 1.23 V versus the reversible hydrogen electrode (RHE) and a significant 360 mV reduction in the onset potential, reaching 0.65 VRHE compared with the ZFO photoanode under 1 sun illumination in a neutral electrolytic environment. This investigation underscores the mechanism of synergistic interplay between the hole transport layer and cocatalyst in boosting the solar-illuminated water-splitting activity of the ZFO photoanode.
Collapse
Affiliation(s)
- Soham Saha
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, West Bengal 700 106, India
| | - Dipanjan Maity
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Debasis De
- Energy Institute, Bengaluru, (Centre of Rajiv Gandhi Institute of Petroleum Technology), International Airport Road, Vidyanagar, Bengaluru 562 157, Karnataka, India
| | - Gobinda Gopal Khan
- Department of Material Science and Engineering, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura 799 022, India
| | - Kalyan Mandal
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, West Bengal 700 106, India
| |
Collapse
|
5
|
Gu J, Li L, Yang Q, Tian F, Zhao W, Xie Y, Yu J, Zhang A, Zhang L, Li H, Zhong J, Jiang J, Wang Y, Liu J, Lu J. Twinning Engineering of Platinum/Iridium Nanonets as Turing-Type Catalysts for Efficient Water Splitting. J Am Chem Soc 2024; 146:5355-5365. [PMID: 38358943 DOI: 10.1021/jacs.3c12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.
Collapse
Affiliation(s)
- Jialun Gu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Lanxi Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qi Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Wei Zhao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youneng Xie
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lei Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Hongkun Li
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jing Zhong
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiali Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Yanju Wang
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
| | - Jiahua Liu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- CityU-Shenzhen Futian Research Institute, No. 3, Binglang Road, Futian District, Shenzhen 518000, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518000, China
| |
Collapse
|
6
|
Xing Z, Zhang G, Gao J, Ye J, Zhou Z, Liu B, Yan X, Chen X, Guo M, Yue K, Li X, Wang Q, Liu J. Turing Instability of Liquid-Solid Metal Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309999. [PMID: 37931919 DOI: 10.1002/adma.202309999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Indexed: 11/08/2023]
Abstract
The classical Turing morphogenesis often occurs in nonmetallic solution systems due to the sole competition of reaction and diffusion processes. Here, this work conceives that gallium (Ga) based liquid metals (LMs) possess the ability to alloy, diffuse, and react with a range of solid metals (SMs) and thus should display Turing instability leading to a variety of nonequilibrium spatial concentration patterns. This work discloses a general mechanism for obtaining labyrinths, stripes, and spots-like stationary Turing patterns in the LM-SM reaction-diffusion systems (GaX-Y), taking the gallium indium alloy and silver substrate (GaIn-Ag) system as a proof of concept. It is only when Ga atoms diffuse over Y much faster than X while X reacts with Y preferentially, that Turing instability occurs. In such a metallic system, Ga serves as an inhibitor and X as an activator. The dominant factors in tuning the patterning process include temperature and concentration. Intermetallic compounds contained in the Turing patterns and their competitive reactions have also been further clarified. This LM Turing instability mechanism opens many opportunities for constructing microstructure systems utilizing condensed matter to experimentally explore the general morphogenesis process.
Collapse
Affiliation(s)
- Zerong Xing
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, 528399, China
| | - Jianye Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhuquan Zhou
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biying Liu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotong Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xueqing Chen
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, 528399, China
| | - Xuanze Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qian Wang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Gu J, Li L, Xie Y, Chen B, Tian F, Wang Y, Zhong J, Shen J, Lu J. Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction. Nat Commun 2023; 14:5389. [PMID: 37666814 PMCID: PMC10477283 DOI: 10.1038/s41467-023-40972-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Low-dimensional nanocrystals with controllable defects or strain modifications are newly emerging active electrocatalysts for hydrogen-energy conversion and utilization; however, a crucial challenge remains in insufficient stability due to spontaneous structural degradation and strain relaxation. Here we report a Turing structuring strategy to activate and stabilize superthin metal nanosheets by incorporating high-density nanotwins. Turing configuration, realized by constrained orientation attachment of nanograins, yields intrinsically stable nanotwin network and straining effects, which synergistically reduce the energy barrier of water dissociation and optimize the hydrogen adsorption free energy for hydrogen evolution reaction. Turing PtNiNb nanocatalyst achieves 23.5 and 3.1 times increase in mass activity and stability index, respectively, compared against commercial 20% Pt/C. The Turing PtNiNb-based anion-exchange-membrane water electrolyser with a low Pt mass loading of 0.05 mg cm-2 demonstrates at least 500 h stability at 1000 mA cm-2, disclosing the stable catalysis. Besides, this new paradigm can be extended to Ir/Pd/Ag-based nanocatalysts, illustrating the universality of Turing-type catalysts.
Collapse
Affiliation(s)
- Jialun Gu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- CityU-Shenzhen Futian Research Institute, Shenzhen, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Lanxi Li
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Youneng Xie
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China
| | - Yanju Wang
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Jing Zhong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Junda Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Jian Lu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- CityU-Shenzhen Futian Research Institute, Shenzhen, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Xing Z, Zhang G, Ye J, Zhou Z, Gao J, Du B, Yue K, Wang Q, Liu J. Liesegang Phenomenon of Liquid Metals on Au Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209392. [PMID: 36416104 DOI: 10.1002/adma.202209392] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Room temperature liquid metals (LM) such as gallium (Ga) own the potential to react with specific materials which would incubate new application categories. Here, diverse self-organized ring patterns due to nonequilibrium reaction-diffusion and spreading-limitation of Ga-based LM clusters on gold (Au) film are reported, among which diffusion is the controlling step and the self-limiting oxide layer plays the role of kinetic barrier. Such phenomena, classically known as the Liesegang rings, mainly occur in electrolyte media. Unlike existing systems, the present periodic crystallization mechanism enables highly symmetric spatiotemporal periodic Liesegang rings on a smaller scale under ambient conditions. Typically, the Ga-Au and eutectic gallium-indium alloy (EGaIn)-Au reaction-diffusion-spreading systems are constructed, obtaining the revert type and hybrid type concentric Liesegang patterns, respectively. The competitive patterning behavior of the intermediate phase products AuGa2 and AuIn2 in hybrid Liesegang patterns is further analyzed by altering the initial Ga/In mass ratio, first-principles calculations, and molecular dynamic simulations. When the mass ratio of In in GaIn alloy exceeds 15%, it will preferentially react with Au. The discovery of LM Liesegang phenomenon is expected to be a flashpoint for self-organized reaction-diffusion systems and offers promising rules for diverse areas such as materials synthesis and the jewelry design industry.
Collapse
Affiliation(s)
- Zerong Xing
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, 528399, China
| | - Jiao Ye
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuquan Zhou
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianye Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Bangdeng Du
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, 528399, China
| | - Qian Wang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
He G, Lu L, Zhang N, Liu W, Chen Z, Li Z, Zou Z. Narrowing the band gap and suppressing electron-hole recombination in β-Fe 2O 3 by chlorine doping. Phys Chem Chem Phys 2023; 25:3695-3701. [PMID: 36651804 DOI: 10.1039/d2cp04723c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effects of halogen (F, Cl, Br, I, and At) doping in the direct-band-gap β-Fe2O3 semiconductor on its band structures and electron-hole recombination have been investigated by density functional theory. Doping Br, I, and At in β-Fe2O3 leads to transformation from a direct-band-gap semiconductor to an indirect-band-gap semiconductor because their atomic radii are too large; however, F- and Cl-doped β-Fe2O3 remain as direct-band-gap semiconductors. Due to the deep impurity states of the F dopant, this study focuses on the effects of the Cl dopant on the band structures of β-Fe2O3. Two impurity levels are introduced when Cl is doped into β-Fe2O3, which narrows the band gap by approximately 0.3 eV. After doping Cl, the light-absorption edge of β-Fe2O3 redshifts from 650 to 776 nm, indicating that its theoretical solar to hydrogen efficiency for solar water splitting increases from 20.6% to 31.4%. In addition, the effective mass of the holes in halogen-doped β-Fe2O3 becomes significantly larger than that in undoped β-Fe2O3, which may suppress electron-hole recombination.
Collapse
Affiliation(s)
- Gaoxiang He
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China.
| | - Linguo Lu
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA.
| | - Ningsi Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China.
| | - Wangxi Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China.
| | - Zhongfang Chen
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA.
| | - Zhaosheng Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China.
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, People's Republic of China.
| |
Collapse
|
10
|
Wu D, Housel LM, King ST, Mansley ZR, Sadique N, Zhu Y, Ma L, Ehrlich SN, Zhong H, Takeuchi ES, Marschilok AC, Bock DC, Wang L, Takeuchi KJ. Simultaneous Elucidation of Solid and Solution Manganese Environments via Multiphase Operando Extended X-ray Absorption Fine Structure Spectroscopy in Aqueous Zn/MnO 2 Batteries. J Am Chem Soc 2022; 144:23405-23420. [PMID: 36513373 PMCID: PMC9801424 DOI: 10.1021/jacs.2c09477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aqueous Zn/MnO2 batteries (AZMOB) with mildly acidic electrolytes hold promise as potential green grid-level energy storage solutions for clean power generation. Mechanistic understanding is critical to advance capacity retention needed by the application but is complex due to the evolution of the cathode solid phases and the presence of dissolved manganese in the electrolyte due to a dissolution-deposition redox process. This work introduces operando multiphase extended X-ray absorption fine structure (EXAFS) analysis enabling simultaneous characterization of both aqueous and solid phases involved in the Mn redox reactions. The methodology was successfully conducted in multiple electrolytes (ZnSO4, Zn(CF3SO3)2, and Zn(CH3COO)2) revealing similar manganese coordination environments but quantitative differences in distribution of Mnn+ species in the solid and solution phases. Complementary Raman spectroscopy was utilized to identify the less crystalline Mn-containing products formed under charge at the cathodes. This was further augmented by transmission electron microscopy (TEM) to reveal the morphology and surface condition of the deposited solids. The results demonstrate an effective approach for bulk-level characterization of poorly crystalline multiphase solids while simultaneously gaining insight into the dissolved transition-metal species in solution. This work provides demonstration of a useful approach toward gaining insight into complex electrochemical mechanisms where both solid state and dissolved active materials are important contributors to redox activity.
Collapse
Affiliation(s)
- Daren Wu
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Lisa M. Housel
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Steven T. King
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zachary R. Mansley
- Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States,Department
of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nahian Sadique
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yimei Zhu
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States,Department
of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lu Ma
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Steven N. Ehrlich
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hui Zhong
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Esther S. Takeuchi
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States,Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States,Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Amy C. Marschilok
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States,Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States,Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David C. Bock
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Lei Wang
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States
| | - Kenneth J. Takeuchi
- Institute
for Energy Sustainability and Equity, Stony
Brook University, Stony
Brook, New York 11794, United States,Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794, United States,Interdisciplinary
Science Department, Brookhaven National
Laboratory, Upton, New York 11973, United States,Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States,
| |
Collapse
|
11
|
Xu X, Wang W, Zhang Y, Chen Y, Huang H, Fang T, Li Y, Li Z, Zou Z. Centimeter-scale perovskite SrTaO2N single crystals with enhanced photoelectrochemical performance. Sci Bull (Beijing) 2022; 67:1458-1466. [DOI: 10.1016/j.scib.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022]
|