1
|
Liang L, Wang W, Li M, Xu Y, Lu Z, Wei J, Tang BZ, Sun F, Tong R. Cancer Photodynamic Therapy Enabled by Water-Soluble Chlorophyll Protein. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16668-16680. [PMID: 40050258 PMCID: PMC11931482 DOI: 10.1021/acsami.5c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025]
Abstract
Photodynamic therapy (PDT) has been utilized to treat various malignant cancers for more than a century. However, many photosensitizers (e.g., derivatives of porphyrins, chlorins, etc.) central to PDT are still suffering from limitations such as water insolubility, dark toxicity, photo/thermal-instability, difficult synthesis/preparation, and poor tumor selectivity. Numerous effective strategies include designing new synthetic photosensitizers by exploiting heavy atom effect, aggregation-induced emission effect (AIE), and electronic/energy effects (donor-acceptor, and Förster resonance energy transfer: FRET), and the linkage of activatable and targeting molecules has been developed to address one or more of these limitations. However, these structural modifications of photosensitizing organic molecules are synthetically challenging and unpredictable in terms of efficacy versus toxicity. Herein, we report a new and simple strategy for effective PDT by combining natural spinach-derived chlorophylls (photosensitizer) with natural water-soluble chlorophyll proteins (WSCPs) derived originally from plants and produced heterologously by bacteria (E. coli). The recombinant WSCPs (chlorophyll-WSCP) are tetrameric and stable under air/thermal conditions and importantly can produce highly reactive singlet oxygen under red/far-red light irradiation to induce cancer cell death. Our in vivo mouse model studies (melanoma xenografts) further validate the efficacy of the recombinant WSCPs as a new class of water-soluble, nontoxic, and highly efficient photosensitizers for PDT. This work represents the first example of the application of WSCPs in PDT and may advance the clinical applications of PDT for cancer treatment.
Collapse
Affiliation(s)
- Lixin Liang
- Guangxi
Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Wenjun Wang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Manjia Li
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yingjie Xu
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Zhangdi Lu
- Exponent
Ltd., 12 Science Park
West Avenue, Unit, Sha Tin 802-803, New Territories, Hong Kong
| | - Jingjing Wei
- College
of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ben Zhong Tang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen 518172, Guangdong, China
| | - Fei Sun
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Rongbiao Tong
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
2
|
Wang Y, Jiang J, Xiong Q, Li S, Shao J, Xie M, Zeng AP. Programmable solid-state condensates for spatiotemporal control of mammalian gene expression. Nat Chem Biol 2025:10.1038/s41589-025-01860-0. [PMID: 40087540 DOI: 10.1038/s41589-025-01860-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/13/2025] [Indexed: 03/17/2025]
Abstract
Engineering of nuclear condensates with chemically inducible gene switches is highly desired but challenging for precise and on-demand regulation of mammalian gene expression. Here, we harness the phase-separation capability of biomolecular condensates and describe a versatile strategy to chemically program ligand-dependent gene expression at various stages of interest. By engineering synthetic anchor proteins capable of tethering various genetically encoded condensate structures toward different cellular compartments or gene products of interest, inducible regulation of transcriptional and translational activities was achieved at different endogenous and episomal loci using the same sets of anchor proteins and synthetic solid-state condensates. Using such a holistic condensate-based strategy, we not only achieved regulation performances comparing favorably to state-of-the-art strategies described for CRISPR-Cas9 activity and transcriptional silencing but further showed that chemically inducible retention of mRNA molecules into engineered condensate structures within the nucleus can become a remarkably efficient alternative for translational regulation.
Collapse
Affiliation(s)
- Yukai Wang
- School of Life Sciences, Fudan University, Shanghai, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Intelligent Low-Carbon Biosynthesis of Zhejiang Province, Westlake University, Hangzhou, China
| | - Jian Jiang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences and School of Medicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qiqi Xiong
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences and School of Medicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Shichao Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences and School of Medicine, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiawei Shao
- Center for Regenerative and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Mingqi Xie
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences and School of Medicine, Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- School of Engineering, Westlake University, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| | - An-Ping Zeng
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, China.
- Key Laboratory of Intelligent Low-Carbon Biosynthesis of Zhejiang Province, Westlake University, Hangzhou, China.
- School of Engineering, Westlake University, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
3
|
Jin K, Yu W, Liu Y, Li J, Du G, Chen J, Liu L, Lv X. Light-induced programmable solid-liquid phase transition of biomolecular condensates for improved biosynthesis. Trends Biotechnol 2025:S0167-7799(25)00049-6. [PMID: 40082181 DOI: 10.1016/j.tibtech.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Keeping condensates in liquid-like states throughout the biosynthesis process in microbial cell factories remains an ongoing challenge. Here, we present a light-controlled phase regulator, which maintains the liquid-like features of synthetic condensates on demand throughout the biosynthesis process upon light induction, as demonstrated by various live cell-imaging techniques. Specifically, the tobacco etch virus (TEV) protease controlled by light cleaves intrinsically disordered proteins (IDPs) to alter their valency and concentration for controlled phase transition and programmable fluidity of cellular condensates. As a proof of concept, we harness this capability to significantly improve the production of squalene and ursolic acid (UA) in engineered Saccharomyces cerevisiae. Our work provides a powerful approach to program the solid-liquid phase transition of biomolecular condensates for improved biosynthesis.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Song S, Ivanov T, Doan-Nguyen TP, da Silva LC, Xie J, Landfester K, Cao S. Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential. Angew Chem Int Ed Engl 2025; 64:e202418431. [PMID: 39575859 DOI: 10.1002/anie.202418431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 01/24/2025]
Abstract
Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell-like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life-like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | | | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
5
|
Li Z, Tan W, Zhao GP, Zeng X, Zhao W. Recent advances in the synthesis and application of biomolecular condensates. J Biol Chem 2025; 301:108188. [PMID: 39814227 PMCID: PMC11847540 DOI: 10.1016/j.jbc.2025.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Biomolecular condensates (BMCs) represent a group of organized and programmed systems that participate in gene transcription, chromosome organization, cell division, tumorigenesis, and aging. However, the understanding of BMCs in terms of internal organizations and external regulations remains at an early stage. Recently, novel approaches such as synthetic biology have been used for de novo synthesis of BMCs. These synthesized BMCs (SBMCs) driven by phase separation adeptly resemble the self-assembly and dynamics of natural BMCs, offering vast potentials in basic and applied research. This review introduces recent progresses in phase separation-induced SBMCs, attempting to elaborate on the intrinsic principles and regulatory methodologies used to construct SBMCs. Furthermore, the scientific applications of SBMCs are illustrated, as indicated by the studies of chromosome structure, pathogenesis, biomanufacturing, artificial cell design, and drug delivery. The controllable SBMCs offer a powerful tool for understanding metabolic regulations, cellular organizations, and disease-associated protein aggregations, raising both opportunities and challenges in the future of biomaterial, biotechnology, and biomedicine.
Collapse
Affiliation(s)
- Zhongyue Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
6
|
Li M, Park BM, Li Z, Huang W, Sun F. Chlorophyll-Based Optogenetics to Control Membraneless Organelles. Methods Mol Biol 2025; 2840:201-216. [PMID: 39724354 DOI: 10.1007/978-1-0716-4047-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Membraneless organelles (MLOs) formed via protein phase separation have garnered significant attention recently due to their relevance to cellular physiology and pathology. However, there is a lack of tools available to study their behavior and control their bioactivity in complex biological systems. This chapter describes a new optogenetic tool based on water-soluble chlorophyll protein (WSCP), a red light-induced singlet oxygen-generating protein, to control synthetic MLOs. Upon exposure to red light, WSCP generates singlet oxygen, which triggers the crosslinking of the proteins in the MLOs, resulting in their liquid-to-solid phase transition. The effective delivery of chlorophylls enables the successful reconstitution of WSCP in living cells, thus offering a potential approach to biological regulation at the subcellular level.
Collapse
Affiliation(s)
- Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Byung Min Park
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Zhaoxia Li
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Weiqi Huang
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China.
- Research Institute of Tsinghua, Pearl River Delta, Guangzhou, China.
| |
Collapse
|
7
|
Li M, Huang W, Duan L, Sun F. Control Intracellular Protein Condensates with Light. ACS Synth Biol 2024; 13:3799-3811. [PMID: 39622001 DOI: 10.1021/acssynbio.4c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Protein phase transitions are gaining traction among biologists for their wide-ranging roles in biological regulation. However, achieving precise control over these phenomena in vivo remains a formidable task. Optogenetic techniques present us with a potential means to control protein phase behavior with spatiotemporal precision. This review delves into the design of optogenetic tools, particularly those aimed at manipulating protein phase transitions in complex biological systems. We begin by discussing the pivotal roles of subcellular phase transitions in physiological and pathological processes. Subsequently, we offer a thorough examination of the evolution of optogenetic tools and their applications in regulating these protein phase behaviors. Furthermore, we highlight the tailored design of optogenetic tools for controlling protein phase transitions and the construction of synthetic condensates using these innovative techniques. In the long run, the development of optogenetic tools not only holds the potential to elucidate the roles of protein phase transitions in various physiological processes but also to antagonize pathological ones to reinstate cellular homeostasis, thus bringing about novel therapeutic strategies. The integration of optogenetic techniques into the study of protein phase transitions represents a significant step forward in our understanding and manipulation of biology at the subcellular level.
Collapse
Affiliation(s)
- Manjia Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Weiqi Huang
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen 518036, China
- Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510530, China
| |
Collapse
|
8
|
Zhu YJ, Huang SC, Xia XX, Qian ZG. Noncanonical Amino Acid Incorporation Modulates Condensate States of Intrinsically Disordered Proteins in Escherichia coli Cells. Biomacromolecules 2024; 25:7191-7201. [PMID: 39390911 DOI: 10.1021/acs.biomac.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Biomolecular condensates are distinct subcellular structures with on-demand material states and dynamics in living cells. However, strategies for modulating their material states and physicochemical properties are lacking. Here, we report a chemical strategy for modulating the condensate states of intrinsically disordered proteins in bacterial Escherichia coli cells. This is achieved by noncanonical amino acid (DOPA) incorporation into model resilin-like proteins (RLPs) to endow autonomous oxidative and coordinative cross-linking mechanisms. Biogenesis of spherical gel-like condensates is achieved upon heterologous expression of the DOPA-incorporated RLP in the cells at 30 °C. We reveal that liquid-liquid phase separation underlies the formation of liquid condensates, and this liquid-like state is metastable and its dynamics is compromised by the oxidative and coordinative cross-linkings that ultimately drive the liquid-to-gel transition. Therefore, this study has deepened our understanding of biomolecular condensation and offers a new chemical strategy to expand the landscape of condensation phenotypes of living cells.
Collapse
Affiliation(s)
- Ya-Jiao Zhu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Sheng-Chen Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Fok HKF, Dai X, Yi Q, Che CM, Jiang L, Duan L, Huang J, Yang Z, Sun F. Red-Shifting B 12-Dependent Photoreceptor Protein via Optical Coupling for Inducible Living Materials. Angew Chem Int Ed Engl 2024:e202411105. [PMID: 39239776 DOI: 10.1002/anie.202411105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Cobalamin (B12)-dependent photoreceptors are gaining traction in materials synthetic biology, especially for optically controlling cell-to-cell adhesion in living materials. However, these proteins are mostly responsive to green light, limiting their deep-tissue applications. Here, we present a general strategy for shifting photoresponse of B12-dependent photoreceptor CarHC from green to red/far-red light via optical coupling. Using thiol-maleimide click chemistry, we labeled cysteine-containing CarHC mutants with SulfoCyanine5 (Cy5), a red light-capturing fluorophore. The resulting photoreceptors not only retained the ability to tetramerize in the presence of adenosylcobalamin (AdoB12), but also gained sensitivity to red light; labeled tetramers disassembled on red light exposure. Using genetically encoded click chemistry, we assembled the red-shifted proteins into hydrogels that degraded rapidly in response to red light. Furthermore, Saccharomyces cerevisiae cells were genetically engineered to display CarHC variants, which, alongside in situ Cy5 labeling, led to living materials that could assemble and disassemble in response to AdoB12 and red light, respectively. These results illustrate the CarHC spectrally tuned by optical coupling as a versatile motif for dynamically controlling cell-to-cell interactions within engineered living materials. Given their prevalence and ecological diversity in nature, this spectral tuning method will expand the use of B12-dependent photoreceptors in optogenetics and living materials.
Collapse
Affiliation(s)
- Hong Kiu Francis Fok
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Qikun Yi
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Chi Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK Hong Kong Science Park, New Territories, Hong Kong SAR, 999077, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, 999077, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Zhongguang Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, 518036, China
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Research Institute of Tsinghua Pearl River Delta, Guangzhou, 510530, China
| |
Collapse
|
10
|
Wan L, Zhu Y, Zhang W, Mu W. Recent advances in design and application of synthetic membraneless organelles. Biotechnol Adv 2024; 73:108355. [PMID: 38588907 DOI: 10.1016/j.biotechadv.2024.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.
Collapse
Affiliation(s)
- Li Wan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Zhang L, Chen M, Wang Z, Zhong M, Chen H, Li T, Wang L, Zhao Z, Zhang XB, Ke G, Liu Y, Tan W. Spatiotemporal Regulation of Cell Fate in Living Systems Using Photoactivatable Artificial DNA Membraneless Organelles. ACS CENTRAL SCIENCE 2024; 10:1201-1210. [PMID: 38947212 PMCID: PMC11212128 DOI: 10.1021/acscentsci.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 07/02/2024]
Abstract
Coacervates formed by liquid-liquid phase separation emerge as important biomimetic models for studying the dynamic behaviors of membraneless organelles and synchronously motivating the creation of smart architectures with the regulation of cell fate. Despite continuous progress, it remains challenging to balance the trade-offs among structural stability, versatility, and molecular communication for regulation of cell fate and systemic investigation in a complex physiological system. Herein, we present a self-stabilizing and fastener-bound gain-of-function methodology to create a new type of synthetic DNA membraneless organelle (MO) with high stability and controlled bioactivity on the basis of DNA coacervates. Specifically, long single-strand DNA generated by rolling circle amplification (RCA) is selected as the scaffold that assembles into membraneless coacervates via phase separation. Intriguingly, the as-formed DNA MO can recruit RCA byproducts and other components to achieve self-stabilization, nanoscale condensation, and function encoding. As a proof of concept, photoactivatable DNA MO is constructed and successfully employed for time-dependent accumulation and spatiotemporal management of cancer in a mouse model. This study offers new, important insights into synthetic membraneless organelles for the basic understanding and manipulation of important life processes.
Collapse
Affiliation(s)
- Lili Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Mei Chen
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Materials Science and Engineering, Aptamer
Engineering Center of Hunan Province, Hunan
University, Changsha, Hunan 410082, China
| | - Zhiqiang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Minjuan Zhong
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Hong Chen
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Li
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhihui Zhao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiao-Bing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Guoliang Ke
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Yu X, Li H, Xu C, Xu Z, Chen S, Liu W, Zhang T, Sun H, Ge Y, Qi Z, Liu J. Liquid-Liquid Phase Separation-Mediated Photocatalytic Subcellular Hybrid System for Highly Efficient Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400097. [PMID: 38572522 PMCID: PMC11165473 DOI: 10.1002/advs.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Plant chloroplasts have a highly compartmentalized interior, essential for executing photocatalytic functions. However, the construction of a photocatalytic reaction compartment similar to chloroplasts in inorganic-biological hybrid systems (IBS) has not been reported. Drawing inspiration from the compartmentalized chloroplast and the phenomenon of liquid-liquid phase separation, herein, a new strategy is first developed for constructing a photocatalytic subcellular hybrid system through liquid-liquid phase separation technology in living cells. Photosensitizers and in vivo expressed hydrogenases are designed to coassemble within the cell to create subcellular compartments for synergetic photocatalysis. This compartmentalization facilitates efficient electron transfer and light energy utilization, resulting in highly effective H2 production. The subcellular compartments hybrid system (HM/IBSCS) exhibits a nearly 87-fold increase in H2 production compared to the bare bacteria/hybrid system. Furthermore, the intracellular compartments of the photocatalytic reactor enhance the system's stability obviously, with the bacteria maintaining approximately 81% of their H2 production activity even after undergoing five cycles of photocatalytic hydrogen production. The research brings forward visionary prospects for the field of semi-artificial photosynthesis, offering new possibilities for advancements in areas such as renewable energy, biomanufacturing, and genetic engineering.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Hui Li
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Chengchen Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Shuheng Chen
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Wang Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Tianlong Zhang
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Hongcheng Sun
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Yan Ge
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Zhenhui Qi
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
13
|
Feng J, Gabryelczyk B, Tunn I, Osmekhina E, Linder MB. A Minispidroin Guides the Molecular Design for Cellular Condensation Mechanisms in S. cerevisiae. ACS Synth Biol 2023; 12:3050-3063. [PMID: 37688556 PMCID: PMC10594646 DOI: 10.1021/acssynbio.3c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 09/11/2023]
Abstract
Structural engineering of molecules for condensation is an emerging technique within synthetic biology. Liquid-liquid phase separation of biomolecules leading to condensation is a central step in the assembly of biological materials into their functional forms. Intracellular condensates can also function within cells in a regulatory manner to facilitate reaction pathways and to compartmentalize interactions. We need to develop a strong understanding of how to design molecules for condensates and how their in vivo-in vitro properties are related. The spider silk protein NT2RepCT undergoes condensation during its fiber-forming process. Using parallel in vivo and in vitro characterization, in this study, we mapped the effects of intracellular conditions for NT2RepCT and its several structural variants. We found that intracellular conditions may suppress to some extent condensation whereas molecular crowding affects both condensate properties and their formation. Intracellular characterization of protein condensation allowed experiments on pH effects and solubilization to be performed within yeast cells. The growth of intracellular NT2RepCT condensates was restricted, and Ostwald ripening was not observed in yeast cells, in contrast to earlier observations in E. coli. Our results lead the way to using intracellular condensation to screen for properties of molecular assembly. For characterizing different structural variants, intracellular functional characterization can eliminate the need for time-consuming batch purification and in vitro condensation. Therefore, we suggest that the in vivo-in vitro understanding will become useful in, e.g., high-throughput screening for molecular functions and in strategies for designing tunable intracellular condensates.
Collapse
Affiliation(s)
- Jianhui Feng
- Department of Bioproducts
and Biosystems, School of Chemical Engineering and Academy of Finland
Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo 02150, Finland
| | - Bartosz Gabryelczyk
- Department of Bioproducts
and Biosystems, School of Chemical Engineering and Academy of Finland
Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo 02150, Finland
| | - Isabell Tunn
- Department of Bioproducts
and Biosystems, School of Chemical Engineering and Academy of Finland
Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo 02150, Finland
| | - Ekaterina Osmekhina
- Department of Bioproducts
and Biosystems, School of Chemical Engineering and Academy of Finland
Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo 02150, Finland
| | - Markus B. Linder
- Department of Bioproducts
and Biosystems, School of Chemical Engineering and Academy of Finland
Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo 02150, Finland
| |
Collapse
|
14
|
Bao Y, Chen H, Xu Z, Gao J, Jiang L, Xia J. Photo-Responsive Phase-Separating Fluorescent Molecules for Intracellular Protein Delivery. Angew Chem Int Ed Engl 2023; 62:e202307045. [PMID: 37648812 DOI: 10.1002/anie.202307045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Cellular membranes, including the plasma and endosome membranes, are barriers to outside proteins. Various vehicles have been devised to deliver proteins across the plasma membrane, but in many cases, the payload gets trapped in the endosome. Here we designed a photo-responsive phase-separating fluorescent molecule (PPFM) with a molecular weight of 666.8 daltons. The PPFM compound condensates as fluorescent droplets in the aqueous solution by liquid-liquid phase separation (LLPS), which disintegrate upon photoirradiation with a 405 nm light-emitting diode (LED) lamp within 20 min or a 405 nm laser within 3 min. The PPFM coacervates recruit a wide range of peptides and proteins and deliver them into mammalian cells. Photolysis disperses the payload from condensates into the cytosolic space. Altogether, a type of small molecules that are photo-responsive and phase separating are discovered; their coacervates can serve as transmembrane vehicles for intracellular delivery of proteins, whereas photo illumination triggers the cytosolic distribution of the payload.
Collapse
Affiliation(s)
- Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hongfei Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhiyi Xu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiayang Gao
- Center for Cell & Developmental Biology, School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Liwen Jiang
- Center for Cell & Developmental Biology, School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
15
|
Kamagata K, Hando A, Ariefai M, Iwaki N, Kanbayashi S, Koike R, Ikeda K. Rational design of phase separating peptides based on phase separating protein sequence of p53. Sci Rep 2023; 13:5648. [PMID: 37024567 PMCID: PMC10079954 DOI: 10.1038/s41598-023-32632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Artificial phase-separating (PS) peptides can be used in various applications such as microreactors and drug delivery; however, the design of artificial PS peptides remains a challenge. This can be attributed to the limitation of PS-relevant residues that drive phase separation by interactions of their pairs in short peptides and the difficulty in the design involving interaction with target PS proteins. In this study, we propose a rational method to design artificial PS peptides that satisfy the requirements of liquid droplet formation and co-phase separation with target PS proteins based on the target PS protein sequence. As a proof of concept, we designed five artificial peptides from the model PS protein p53 using this method and confirmed their PS properties using differential interference contrast and fluorescence microscopy. Single-molecule fluorescent tracking demonstrated rapid diffusion of the designed peptides in their droplets compared to that of p53 in p53 droplets. In addition, size-dependent uptake of p53 oligomers was observed in the designed peptide droplets. Large oligomers were excluded from the droplet voids and localized on the droplet surface. The uptake of high-order p53 oligomers into the droplets was enhanced by the elongated linker of the designed peptides. Furthermore, we found that the designed peptide droplets recruited p53 to suppress gel-like aggregate formation. Finally, we discuss aspects that were crucial in the successful design of the artificial PS peptides.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | - Atsumi Hando
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Maulana Ariefai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Nanako Iwaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
16
|
Zhou P, Liu H, Meng X, Zuo H, Qi M, Guo L, Gao C, Song W, Wu J, Chen X, Chen W, Liu L. Engineered Artificial Membraneless Organelles in Saccharomyces cerevisiae To Enhance Chemical Production. Angew Chem Int Ed Engl 2023; 62:e202215778. [PMID: 36762978 DOI: 10.1002/anie.202215778] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/11/2023]
Abstract
Microbial cell factories provide a green and sustainable opportunity to produce value-added products from renewable feedstock. However, the leakage of toxic or volatile intermediates decreases the efficiency of microbial cell factories. In this study, membraneless organelles (MLOs) were reconstructed in Saccharomyces cerevisiae by the disordered protein sequence A-IDPs. A regulation system was designed to spatiotemporally regulate the size and rigidity of MLOs. Manipulating the MLO size of strain ZP03-FM, the amounts of assimilated methanol and malate were increased by 162 % and 61 %, respectively. Furthermore, manipulating the MLO rigidity in strain ZP04-RB made acetyl-coA synthesis from oxidative glycolysis change to non-oxidative glycolysis; consequently, CO2 release decreased by 35 % and the n-butanol yield increased by 20 %. This artificial MLO provides a strategy for the co-localization of enzymes to channel C1 starting materials into value-added chemicals.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huiyun Zuo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
17
|
Qian ZG, Huang SC, Xia XX. Synthetic protein condensates for cellular and metabolic engineering. Nat Chem Biol 2022; 18:1330-1340. [DOI: 10.1038/s41589-022-01203-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
|