1
|
Panyukov S. Scaling theory of fibrin polymerization. Phys Rev E 2024; 110:L062501. [PMID: 39916160 DOI: 10.1103/physreve.110.l062501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/15/2024] [Indexed: 05/07/2025]
Abstract
Fibrin polymerization is responsible for the formation of blood clots and is used in many biomedical applications. Considering polymerization as a dynamic phase transition, we constructed a scaling theory of fibrin networks formation. We show that in the transient state, protofibrils and branched clusters are self-assembled as a result of diffusion-controlled reactions with free fibrin monomers. The rate of reactions increases with initial concentrations of fibrinogen and thrombin. Protofibrils and clusters aggregate laterally, forming fibers, the elongation of which leads to their crosslinking to form a fibrin network. We calculated the network structure for different ratios of lag time and fibrinogen activation time. At a low ratio of fibrinogen and thrombin concentrations, sparse networks of thick and long fibers are formed, whereas at a high ratio, dense networks of thin and short fibers. The predicted concentration dependences of network parameters are in agreement with experimental data.
Collapse
Affiliation(s)
- Sergey Panyukov
- Moscow Institute of Physics and Technology, P.N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia and Department of Theoretical Physics, 141700 Dolgoprudny, Russia
| |
Collapse
|
2
|
Prince E. Designing Biomimetic Strain-Stiffening into Synthetic Hydrogels. Biomacromolecules 2024; 25:6283-6295. [PMID: 39356204 DOI: 10.1021/acs.biomac.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Biological tissues are mechanoresponsive; that is, their properties dynamically change in response to mechanical stimuli. For example, in response to shear or elongational strain, collagen, fibrin, actin, and other filamentous biomaterials undergo dramatic strain-stiffening. Above a critical strain, their stiffness increases over orders of magnitude. While it is widely accepted that the stiffness of biological tissues impacts cell phenotype and several diseases, the biological impact of strain-stiffening remains understudied. Synthetic hydrogels that mimic the mechanoresponsive nature of biological tissues could serve as an in vitro platform for these studies. This review highlights recent efforts to mimic the strain-stiffening behavior of biological materials in synthetic hydrogels. We discuss the design principles for imparting synthetic hydrogels with biomimetic strain-stiffening, critically compare designs of strain-stiffening hydrogels that have been reported thus far, and discuss their use as in vitro platforms to probe how strain-stiffening impacts cell behavior, diseases, and other biological processes.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. West, N2L 3G1 Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. West, N2L 3G1 Waterloo, ON, Canada
| |
Collapse
|
3
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Xu Z, Yue P, Feng JJ. Hystereses in flow-induced compression of a poroelastic hydrogel. SOFT MATTER 2024; 20:6940-6951. [PMID: 39163000 DOI: 10.1039/d4sm00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We investigate theoretically the one-dimensional compression of a hydrogel layer by a uniform fluid flow normal to the gel surface. The flow is driven by a pressure drop across the gel layer, which is modeled as a poroelastic medium. The novelty comes from considering, for the first time, the impact of interfacial permeability and compression. This leads to several new features for the flow and gel compression. As the pressure simultaneously drives the Darcy flow through the pores and compresses the gel, the flux-pressure relationship may become non-monotonic. Most interestingly, we discover two types of hysteresis when the pressure or the flux is controlled, which are also confirmed by transient numerical simulations. The first type of hysteresis stems from the interplay between the gel compression at the upstream interface and that in the bulk of the gel, and would not be predicted by models that ignore the interfacial compression. The second type hinges on strain-hardening in the gel that maintains a non-vanishing permeability at high pressure. Finally, we suggest experimental setups and conditions to seek such hystereses in real gels.
Collapse
Affiliation(s)
- Zelai Xu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Pengtao Yue
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| |
Collapse
|
5
|
Shivers JL, MacKintosh FC. Nonlinear Poisson effect in affine semiflexible polymer networks. Phys Rev E 2024; 110:014502. [PMID: 39160898 DOI: 10.1103/physreve.110.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Stretching an elastic material along one axis typically induces contraction along the transverse axes, a phenomenon known as the Poisson effect. From these strains, one can compute the specific volume, which generally either increases or, in the incompressible limit, remains constant as the material is stretched. However, in networks of semiflexible or stiff polymers, which are typically highly compressible yet stiffen significantly when stretched, one instead sees a significant reduction in specific volume under finite strains. This volume reduction is accompanied by increasing alignment of filaments along the strain axis and a nonlinear elastic response, with stiffening of the apparent Young's modulus. For semiflexible networks, in which entropic bending elasticity governs the linear elastic regime, the nonlinear Poisson effect is caused by the nonlinear force-extension relationship of the constituent filaments, which produces a highly asymmetric response of the constituent polymers to stretching and compression. The details of this relationship depend on the geometric and elastic properties of the underlying filaments, which can vary greatly in experimental systems. Here, we provide a comprehensive characterization of the nonlinear Poisson effect in an affine network model and explore the influence of filament properties on essential features of both microscopic and macroscopic response, including strain-driven alignment and volume reduction.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
6
|
Chen Z, Ezzo M, Zondag B, Rakhshani F, Ma Y, Hinz B, Kumacheva E. Intrafibrillar Crosslinking Enables Decoupling of Mechanical Properties and Structure of a Composite Fibrous Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305964. [PMID: 37671420 DOI: 10.1002/adma.202305964] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/03/2023] [Indexed: 09/07/2023]
Abstract
The fibrous network of an extracellular matrix (ECM) possesses mechanical properties that convey critical biological functions in cell mechanotransduction. Engineered fibrous hydrogels show promise in emulating key aspects of ECM structure and functions. However, varying hydrogel mechanics without changing its architecture remains a challenge. A composite fibrous hydrogel is developed to vary gel stiffness without affecting its structure by controlling intrafibrillar crosslinking. The hydrogel is formed from aldehyde-modified cellulose nanocrystals and gelatin methacryloyl that provide the capability of intrafibrillar photocrosslinking. By varying the degree of gelatin functionalization with methacryloyl groups and/or photoirradiation time, the hydrogel's elastic modulus is changed by more than an order of magnitude, while preserving the same fiber diameter and pore size. The hydrogel is used to seed primary mouse lung fibroblasts and test the role of ECM stiffness on fibroblast contraction and activation. Increasing hydrogel stiffness by stronger intrafibrillar crosslinking results in enhanced fibroblast activation and increased fibroblast contraction force, yet at a reduced contraction speed. The developed approach enables the fabrication of biomimetic hydrogels with decoupled structural and mechanical properties, facilitating studies of ECM mechanics on tissue development and disease progression.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Benjamen Zondag
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Yingshan Ma
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| |
Collapse
|
7
|
Prince E, Morozova S, Chen Z, Adibnia V, Yakavets I, Panyukov S, Rubinstein M, Kumacheva E. Nanocolloidal hydrogel mimics the structure and nonlinear mechanical properties of biological fibrous networks. Proc Natl Acad Sci U S A 2023; 120:e2220755120. [PMID: 38091296 PMCID: PMC10743449 DOI: 10.1073/pnas.2220755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 12/18/2023] Open
Abstract
Fibrous networks formed by biological polymers such as collagen or fibrin exhibit nonlinear mechanical behavior. They undergo strong stiffening in response to weak shear and elongational strains, but soften under compressional strain, in striking difference with the response to the deformation of flexible-strand networks formed by molecules. The nonlinear properties of fibrous networks are attributed to the mechanical asymmetry of the constituent filaments, for which a stretching modulus is significantly larger than the bending modulus. Studies of the nonlinear mechanical behavior are generally performed on hydrogels formed by biological polymers, which offers limited control over network architecture. Here, we report an engineered covalently cross-linked nanofibrillar hydrogel derived from cellulose nanocrystals and gelatin. The variation in hydrogel composition provided a broad-range change in its shear modulus. The hydrogel exhibited both shear-stiffening and compression-induced softening, in agreement with the predictions of the affine model. The threshold nonlinear stress and strain were universal for the hydrogels with different compositions, which suggested that nonlinear mechanical properties are general for networks formed by rigid filaments. The experimental results were in agreement with an affine model describing deformation of the network formed by rigid filaments. Our results lend insight into the structural features that govern the nonlinear biomechanics of fibrous networks and provide a platform for future studies of the biological impact of nonlinear mechanical properties.
Collapse
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, ONN2L3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ONN2L3G1, Canada
| | - Sofia Morozova
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- N. E. Bauman Moscow State Technical University, Moscow105005, Russia
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
| | - Vahid Adibnia
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NSB3H4R2, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
| | - Sergey Panyukov
- Center of Soft Matter and Physics of Fluids, P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow117924, Russia
- Department of Theoretical Physics, Moscow Institute of Physics and Technology, Moscow 141700, Russia
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
- Department of Biomedical Engineering, Duke University, Durham, NC27708
- Department of Physics, Duke University, Durham, NC27708
- Department of Chemistry, Duke University, Durham, NC27708
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo001-0021, Japan
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ONM5S3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| |
Collapse
|
8
|
Wang Y, Jiang X, Li X, Ding K, Liu X, Huang B, Ding J, Qu K, Sun W, Xue Z, Xu W. Bionic ordered structured hydrogels: structure types, design strategies, optimization mechanism of mechanical properties and applications. MATERIALS HORIZONS 2023; 10:4033-4058. [PMID: 37522298 DOI: 10.1039/d3mh00326d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Natural organisms, such as lobsters, lotus, and humans, exhibit exceptional mechanical properties due to their ordered structures. However, traditional hydrogels have limitations in their mechanical and physical properties due to their disordered molecular structures when compared with natural organisms. Therefore, inspired by nature and the properties of hydrogels similar to those of biological soft tissues, researchers are increasingly focusing on how to investigate bionic ordered structured hydrogels and render them as bioengineering soft materials with unique mechanical properties. In this paper, we systematically introduce the various structure types, design strategies, and optimization mechanisms used to enhance the strength, toughness, and anti-fatigue properties of bionic ordered structured hydrogels in recent years. We further review the potential applications of bionic ordered structured hydrogels in various fields, including sensors, bioremediation materials, actuators, and impact-resistant materials. Finally, we summarize the challenges and future development prospects of bionic ordered structured hydrogels in preparation and applications.
Collapse
Affiliation(s)
- Yanyan Wang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xinyu Jiang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xusheng Li
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Kexin Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Xianrui Liu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Bin Huang
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Junjie Ding
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Keyu Qu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenzhi Sun
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Zhongxin Xue
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University, Yantai 264025, China.
| |
Collapse
|
9
|
Morozova SM, Gevorkian A, Kumacheva E. Design, characterization and applications of nanocolloidal hydrogels. Chem Soc Rev 2023. [PMID: 37464914 DOI: 10.1039/d3cs00387f] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanocolloidal gels (NCGs) are an emerging class of soft matter, in which nanoparticles act as building blocks of the colloidal network. Chemical or physical crosslinking enables NCG synthesis and assembly from a broad range of nanoparticles, polymers, and low-molecular weight molecules. The synergistic properties of NCGs are governed by nanoparticle composition, dimensions and shape, the mechanism of nanoparticle bonding, and the NCG architecture, as well as the nature of molecular crosslinkers. Nanocolloidal gels find applications in soft robotics, bioengineering, optically active coatings and sensors, optoelectronic devices, and absorbents. This review summarizes currently scattered aspects of NCG formation, properties, characterization, and applications. We describe the diversity of NCG building blocks, discuss the mechanisms of NCG formation, review characterization techniques, outline NCG fabrication and processing methods, and highlight most common NCG applications. The review is concluded with the discussion of perspectives in the design and development of NCGs.
Collapse
Affiliation(s)
- Sofia M Morozova
- N.E. Bauman Moscow State Technical University, 5/1 2-nd Baumanskaya street, 105005, Moscow, Russia
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Albert Gevorkian
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto, 80 Saint George street, Toronto, Ontario M5S 3H6, Canada.
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College street, Toronto, Ontario M5S 3E5, Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
10
|
Milano F, Chevrier A, De Crescenzo G, Lavertu M. Injectable Lyophilized Chitosan-Thrombin-Platelet-Rich Plasma (CS-FIIa-PRP) Implant to Promote Tissue Regeneration: In Vitro and Ex Vivo Solidification Properties. Polymers (Basel) 2023; 15:2919. [PMID: 37447564 DOI: 10.3390/polym15132919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Freeze-dried chitosan formulations solubilized in platelet-rich plasma (PRP) are currently evaluated as injectable implants with the potential for augmenting the standard of care for tissue repair in different orthopedic conditions. The present study aimed to shorten the solidification time of such implants, leading to an easier application and a facilitated solidification in a wet environment, which were direct demands from orthopedic surgeons. The addition of thrombin to the formulation before lyophilization was explored. The challenge was to find a formulation that coagulated fast enough to be applied in a wet environment but not too fast, which would make handling/injection difficult. Four thrombin concentrations were analyzed (0.0, 0.25, 0.5, and 1.0 NIH/mL) in vitro (using thromboelastography, rheology, indentation, syringe injectability, and thrombin activity tests) as well as ex vivo (by assessing the implant's adherence to tendon tissue in a wet environment). The biomaterial containing 0.5 NIH/mL of thrombin significantly increased the coagulation speed while being easy to handle up to 6 min after solubilization. Furthermore, the adherence of the biomaterial to tendon tissues was impacted by the biomaterial-tendon contact duration and increased faster when thrombin was present. These results suggest that our biomaterial has great potential for use in regenerative medicine applications.
Collapse
Affiliation(s)
- Fiona Milano
- Biomedical Engineering Institute, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
| | - Anik Chevrier
- Chemical Engineering Department, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
| | - Gregory De Crescenzo
- Biomedical Engineering Institute, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
- Chemical Engineering Department, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
| | - Marc Lavertu
- Biomedical Engineering Institute, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
- Chemical Engineering Department, Polytechnique Montreal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
11
|
Mitra D, Pande S, Chatterji A. Topology-driven spatial organization of ring polymers under confinement. Phys Rev E 2022; 106:054502. [PMID: 36559479 DOI: 10.1103/physreve.106.054502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Entropic repulsion between DNA ring polymers under confinement is a key mechanism governing the spatial segregation of bacterial DNA before cell division. Here we establish that "internal" loops within a modified-ring polymer architecture enhance entropic repulsion between two overlapping polymers confined in a cylinder. Interestingly, they also induce entropy-driven spatial organization of polymer segments as seen in vivo. Here we design polymers of different architectures in our simulations by introducing a minimal number of cross-links between specific monomers along the ring-polymer contour. The cross-links are likely induced by various bridging proteins inside living cells. We investigate the segregation of two polymers with modified topologies confined in a cylinder, which initially had spatially overlapping configurations. This helps us to identify the architectures that lead to higher success rates of segregation. We also establish the mechanism that leads to localization of specific polymer segments. We use the blob model to provide a theoretical understanding of why certain architectures lead to enhanced entropic repulsive forces between the polymers. Lastly, we establish a correspondence between the organizational patterns of the chromosome of the C.crescentus bacterium and our results for a specifically designed polymer architecture. However, the principles outlined here pertaining to the organization of polymeric segments are applicable to both synthetic and biological polymers.
Collapse
|