1
|
Yang B, Hou M, Gao S. Total Synthesis of Polycyclic Natural Products via Photoenolization/Diels-Alder Reaction. Acc Chem Res 2025; 58:1308-1322. [PMID: 40172047 DOI: 10.1021/acs.accounts.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
ConspectusPolycyclic ring systems represent the most common structural features of drug molecules and natural products. Chemical synthesis of complex polycyclic molecules with multiple stereogenic centers, especially quaternary carbon stereocenters, has been a significant challenge in the field of total synthesis. Due to the low reactivities of the substrates and congested chemical environments, the efficient establishment of polycyclic rings and enantioselective construction of quaternary carbon stereocenters are still ongoing challenges. In our laboratory, we are devoted to developing new methodologies and strategies for the total syntheses of bioactive polycyclic natural products and the exploration of their biological potentials. The photoenolization/Diels-Alder (PEDA) reaction has been recognized as a powerful strategy to increase synthetic efficiency and address the aforementioned issues. Over the past several years, our group systematically reinvestigated this reaction in terms of its reactivity and stereoselectivity and developed a unique dinuclear metal-promoted reaction process for constructing fused or spiro polycyclic rings bearing quaternary carbon stereocenters. During the course of this investigation, we have come to realize how to rationally design the synthetic route based on the PEDA reaction and successfully implement the synthetic projects.In this Account, we summarize our endeavors and journeys in the development and application of the PEDA reaction to the total synthesis of topologically complex natural products in order to draw attention to its broad utility and encourage further uptake. In the first part, we provide the details on the investigation of the PEDA reaction to address the issues of reactivity, diastereoselectivity, and enantioselectivity. An enantioselective PEDA reaction involving Ti(Oi-Pr)4 and TADDOL-type ligands was developed. This reaction enables the sterically bulky dienophiles to interact with the transient photoenolized hydroxy-o-quinodimethanes, delivering a wide range of polycyclic rings with single or vicinal quaternary carbon stereocenters in good yields with excellent enantioselectivities. In the second part, we showcase the synthetic potential of PEDA reaction in total synthesis of natural products. The fused tricyclic ring systems, bearing gem-dimethyl groups or quaternary carbon stereocenters located at the ring junction, were efficiently constructed by Ti(Oi-Pr)4-promoted PEDA reactions, which enabled the syntheses of three different types of natural products, including aromatic polyketides (anthrabenzoxocinones, fasamycins/naphthacemycins, and benastatins), meroterpenoid (oncocalyxone B), and halenaquinones (xestoquinone, adociaquinones A and B). To access structurally more complex triterpenoids, namely, perovskones and hydrangenones, the asymmetric PEDA reaction was developed to build a tricyclic ring along with three contiguous quaternary carbon stereocenters. The asymmetric PEDA reaction was also applied to achieve the total synthesis of aryltetralin lactone lignans. Furthermore, an intramolecular PEDA reaction provides a new pathway for the rapid construction of highly congested hydrophenanthrene with a quaternary carbon stereocenter, facilitating the total synthesis of five hasubanan alkaloids. We anticipate that the development of the PEDA reaction will inspire future innovations and progressions in asymmetric photo reactions, and its synthetic potential will be expanded by further applications in the total synthesis of complex natural and drug molecules.
Collapse
Affiliation(s)
- Baochao Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
| | - Min Hou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Wuhu Hospital Affiliated to East China Normal University, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
| | - Shuanhu Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P. R. China
| |
Collapse
|
2
|
Selvarajoo PD, Khatib A, Razali MR, Mediani A, Murugesu S, Perumal V. An Integrated Metabolomics Study on Antidiabetic Activity of Christia vespertilionis Leaves Extract Using Chemometric and Molecular Docking Analysis. Appl Biochem Biotechnol 2024; 196:8980-8997. [PMID: 39088027 DOI: 10.1007/s12010-024-04998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
In disease treatment, the utilisation of medicinal plants has witnessed a discernible rise, driven by concerns over the adverse effects associated with synthetic drugs available in the market. Analyses of the plant Christia vespertilionis (L.f.) Bakh. F., indigenous to Malaysia, has suggested its antidiabetic property linked to α-glucosidase inhibition, but metabolites responsible for antidiabetic are unexplored. The metabolomics approaches and molecular docking simulations were integrated to identify the putative α-glucosidase inhibitors and their enzyme interaction. In this study, the crude leaves extracted from this plant were extracted using solvents of varying polarity, followed by gas and liquid chromatography coupled with mass spectrometry metabolomics. The highest inhibition activity in a mixture of n-hexane and ethyl acetate (1:1, v/v)) was observed. Six putative metabolites corresponding to antidiabetic activity were identified: palmitic acid (2), linolenic acid (4), 7-tetradecenal (5), aloeemodin-8-monoglucoside (14), bruceine I (15), and sanjidin B (16). The mechanism of action of all the identified compounds is competitive, mainly involving hydrophobic and hydrogen bonding interactions with the protein residues. Compounds 14, 15, and 16 exhibited strong binding capabilities with both enzyme crystal structures compared to the positive control, quercetin. The metabolites extracted from C. vespertilionis leaves have demonstrated promising antidiabetic effects. These antidiabetic compounds can potentially commercialise new drug candidates in managing diabetes conditions.
Collapse
Affiliation(s)
- Puvana Devi Selvarajoo
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450, Ipoh, Perak, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd R Razali
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Bangi, Malaysia
| | - Suganya Murugesu
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450, Ipoh, Perak, Malaysia
| | - Vikneswari Perumal
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450, Ipoh, Perak, Malaysia.
| |
Collapse
|
3
|
Wang X, Yin J, Mao W, Wang Z, Wu S, You Y. Cs 2CO 3 Promoted [4 + 2] Cycloaddition of 1,6-Enynes: An Approach to Tetrahydro-1 H-benzo- f-isoindole Isomers. Org Lett 2024; 26:7757-7762. [PMID: 39267494 DOI: 10.1021/acs.orglett.4c02927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
A Cs2CO3-promoted [4 + 2] cycloaddition of 1,6-enynes under mild reaction conditions has been developed. This protocol provides a facile approach to a series of tetrahydro-1H-benzo[f]isoindole isomerized products promoted by Cs2CO3 with moderate to high yields. By simply switching the reaction solvent and controlling the reaction time, two isomerization products could be obtained, both with good selectivity.
Collapse
Affiliation(s)
- Xu Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Junhao Yin
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Wangqin Mao
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
| | - Zhenyu Wang
- Anhui Province Key Lab of Green Manufacturing in Phosegene Industry, Caijiashan Fine Chem Pk, Xinhang 242235, Guangde, China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang'en You
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei 230009, China
- Anhui Province Key Lab of Green Manufacturing in Phosegene Industry, Caijiashan Fine Chem Pk, Xinhang 242235, Guangde, China
| |
Collapse
|
4
|
Liu ZH, Xiao J, Zhai QQ, Tang X, Xu LJ, Zhuang ZY, Wang YW, Peng Y. Intramolecular Ni-catalyzed reductive coupling enables enantiodivergent synthesis of linoxepin. Chem Commun (Camb) 2024; 60:694-697. [PMID: 38105647 DOI: 10.1039/d3cc05312a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A nickel-catalyzed reductive tandem cyclization of the elaborated β-bromo acetal with a dibenzoxepin scaffold was invented to strategically construct the remaining two rings in linoxepin. The generated diasterodivergent intermediates could be easily converted to both enantiomers of this unique cyclolignan molecule via facile oxidations, thus realizing enantiodivergent total synthesis of linoxepin for the first time.
Collapse
Affiliation(s)
- Zi-Hao Liu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Jian Xiao
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Qian-Qian Zhai
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Xi Tang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Li-Jun Xu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhi-Yuan Zhuang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ya-Wen Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Yu Peng
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, P. R. China.
| |
Collapse
|
5
|
Hao M, Xu H. Chemistry and Biology of Podophyllotoxins: An Update. Chemistry 2024; 30:e202302595. [PMID: 37814110 DOI: 10.1002/chem.202302595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| |
Collapse
|
6
|
Lutovsky GA, Yoon TP. Cu(II) salts as terminal oxidants in visible-light photochemical oxidation reactions. Org Biomol Chem 2023; 22:25-36. [PMID: 38047405 PMCID: PMC10842929 DOI: 10.1039/d3ob01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Photochemistry provides an important platform for the discovery of synthetically useful transformations. The development of new oxidative photoreactions, however, has proven to be relatively challenging. The importance of the identity of the terminal oxidant has been an underappreciated consideration in the design of these reactions. Many of the most common terminal oxidants used in ground-state catalytic methods are poorly compatible with the one-electron oxidation state changes characteristic of photoredox reactions and result in hard-to-control deleterious side reactions. As an alternative, Cu(II) salts have emerged as versatile terminal oxidants in photochemical oxidation reactions that are terrestrially abundant, cost-effective, and readily compatible with one-electron oxidation state changes. This review highlights recent reaction methods that leverage Cu(II) oxidation in combination with the photochemical activation of substrates or that use Cu(II) salts as both the active chromophore and terminal oxidant.
Collapse
Affiliation(s)
- Grace A Lutovsky
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
7
|
Yuan P, Liu R, Zhu HM, Liao Z, Xiang JC, Wu AX. An I 2-DMSO catalytic manifold enabled aromatization for C-ring editing of podophyllotoxone. Org Biomol Chem 2023; 21:6468-6473. [PMID: 37539709 DOI: 10.1039/d3ob00927k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The precise aromatization of the C-ring of podophyllotoxone to access value-added dehydropodophyllotoxin derivatives conventionally requires the use of equivalent amounts of unsustainable oxidants and suffers from inefficiencies. Taking advantage of the hydridic character of the C8 and C8' of podophyllotoxone, we have developed an I2-DMSO catalytic manifold that enables a green and selective dehydrogenative aromatization to overcome these synthetic challenges. An unprecedented dehydrogenative amination of podophyllotoxone derivatives was also realized using aniline as the reaction partner.
Collapse
Affiliation(s)
- Peng Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Hui-Min Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhixin Liao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
8
|
Yang B, Li G, Wang Q, Zhu J. Enantioselective Total Synthesis of (+)-Stephadiamine. J Am Chem Soc 2023; 145:5001-5006. [PMID: 36848312 DOI: 10.1021/jacs.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
An asymmetric synthesis of (+)-stephadiamine has been accomplished featuring (a) an enantioselective dearomatizative Michael addition to generate a quaternary stereocenter; (b) a domino sequence involving reductive generation of nitrone from γ-nitro ketone followed by a highly regio- and diastereo-selective intramolecular [3 + 2] cycloaddition to construct the aza[4,3,3]propellane core with concurrent generation of two quaternary stereocenters and two functional groups ready for subsequent transformations; (c) the Curtius rearrangement of the sensitive α,α-disubstituted malonic acid mono ester for the installation of α,α-disubstituted amino ester moiety; (d) a benzylic C-H oxidation under photoredox catalytic conditions; and (e) a highly diastereoselective ketone reduction affording δ-hydroxyester preorganized for lactonization.
Collapse
Affiliation(s)
- Baochao Yang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Guang Li
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Gennaiou K, Kelesidis A, Kourgiantaki M, Zografos AL. Combining the best of both worlds: radical-based divergent total synthesis. Beilstein J Org Chem 2023; 19:1-26. [PMID: 36686041 PMCID: PMC9830495 DOI: 10.3762/bjoc.19.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
A mature science, combining the art of the total synthesis of complex natural structures and the practicality of delivering highly diverged lead compounds for biological screening, is the constant aim of the organic chemistry community. Delivering natural lead compounds became easier during the last two decades, with the evolution of green chemistry and the concepts of atom economy and protecting-group-free synthesis dominating the field of total synthesis. In this new era, total synthesis is moving towards natural efficacy by utilizing both the biosynthetic knowledge of divergent synthesis and the latest developments in radical chemistry. This contemporary review highlights recent total syntheses that incorporate the best of both worlds.
Collapse
Affiliation(s)
- Kyriaki Gennaiou
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Antonios Kelesidis
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Maria Kourgiantaki
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Alexandros L Zografos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| |
Collapse
|
10
|
Yao SC, Xiao J, Nan GM, Peng Y. Progress on total synthesis and their divergent transformations of aryltetrahydrofuran-type lignans. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|