1
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025. [PMID: 40378355 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Lacombe
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Simindokht Rostami
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Arshia Arasteh Kani
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Andrea Borgonovo
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Gerald Striedner
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Birgit Wiltschi
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Tao C, Wang J, Cong J, Yang H, Cao J, Liu C, Cheng T. Broad complex negatively regulates Fibrohexamerin/P25 by binding to the cis-element BMFA in the silkworm, Bombyx mori. Int J Biol Macromol 2025; 307:142114. [PMID: 40089240 DOI: 10.1016/j.ijbiomac.2025.142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Silk proteins, as natural macromolecular substances, hold significant potential for applications in biomaterials and biomedical fields. The expression of silk protein genes exhibits spatiotemporal specificity. Broad Complex (BrC), a key primary response factor to 20-hydroxyecdysone, plays a crucial role in metamorphosis. Our previous study showed that overexpression of BmBrC-Z2 significantly reduced fibroin gene Fibrohexamerin/P25 expression in the posterior silk gland. However, the underlying regulatory mechanism remains unclear. BMFA, a widely expressed factor that inhibits silk protein gene expression by recognizing BMFA elements, remains unidentified. Notably, the binding sequence of BmBrC-Z2 on the P25 promoter aligns with the BMFA element. Dual-Luciferase Reporter Assays, EMSA, and ChIP-PCR confirmed that BmBrC-Z2 directly binds to the BMFA element, thereby inhibiting P25 promoter activity. Furthermore, we demonstrated that BmBrC-Z2 and its isoform BmBrC-Z4 jointly bind to the BMFA element on the P25 promoter during the molting stage, whereas BmBrC-Z4 contributes a secondary role. Knocking out BmBrC-Z2 using the CRISPR/Cas9 system led to significant upregulation of silk protein genes during the molting stage in mutant larvae. These findings deepen our understanding of the complex regulatory mechanisms governing silk production and highlight the interplay between hormonal signaling and transcriptional regulation.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jinxia Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiangshan Cong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Niu RC, Zeng QH, Wang WJ, Wang YJ, Liu TX, Zhang SZ. Knockout of silk fibroin genes in Plutella xylostella results in decreased fitness and performance. PEST MANAGEMENT SCIENCE 2025. [PMID: 40256962 DOI: 10.1002/ps.8852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The ability of insects to spin silk is crucial for their survival, reproduction, and interactions with the environment. The diamondback moth (DBM), Plutella xylostella, a serious agricultural pest, relies on silk production, which influences its behavior and population dynamics. RESULTS This study employed CRISPR/Cas9 technology to knock out three genes, that is, silk fibroin heavy chain (PxFibH), silk fibroin light chain (PxFibL), and fibrohexamerin (PxP25), to investigate their roles in silk gland development and related biological traits. We successfully generated PxFibH, PxFibL, and PxP25 knockout mutants, which displayed defective cocoon formation and developed into naked pupae. Further analysis revealed significant alterations in silk gland structure and various biological parameters, including increased larval mortality, prolonged developmental time, reduced pupal weight, and shortened adult lifespan. CONCLUSIONS These findings highlight the importance of silk fibroin genes in silk production and growth development in P. xylostella, positioning them as potential targets for innovative pest control strategies. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui-Chang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qing-Hui Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wen-Jing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yi-Jing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang, China
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Ou Y, Luo Q, Zeng W, Tang Y, Hu J, Liu C, Ma Y, Xu H. BmHR3 Is Essential for Silk Gland Development and Silk Protein Synthesis in Silkworms ( Bombyx mori). INSECTS 2025; 16:369. [PMID: 40332830 PMCID: PMC12028065 DOI: 10.3390/insects16040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
The steroid hormone 20-hydroxyecdysone (20E), which is known to regulate insect molting and metamorphosis, is crucial for the normal development of silk glands (SGs) in the silkworm Bombyx mori. However, how the 20E signaling pathway and its core members function in the SG remains largely unclear. Here, we report that the orphan nuclear receptor BmHR3, a 20E-response factor, plays an essential role in regulating SG development and silk protein synthesis. First, we showed that tissue-specific BmHR3 overexpression and knockout result in severe developmental defects in posterior silk glands (PSGs). Second, we revealed that BmHR3 dysfunction in PSGs dramatically represses the transcription of silk fibroin protein-coding genes, thereby inhibiting fibroin protein synthesis. Finally, we confirmed that BmHR3 can regulate fibroin protein-coding gene expression via direct and indirect mechanisms. This study elucidates the vital function of BmHR3 in B. mori SG and provides valuable information for thoroughly understanding the regulatory roles of 20E signaling in specialized insect organs.
Collapse
Affiliation(s)
- Yao Ou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
- Chongqing Sericulture Science and Technology Research Institute, Chongqing 400715, China
| | - Qin Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| | - Wenhui Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| | - Yiyun Tang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| | - Jie Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| | - Chun Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| | - Yan Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.O.); (Q.L.); (W.Z.); (Y.T.); (J.H.); (C.L.)
| |
Collapse
|
5
|
Zhao S, Wang X, Yang T, Zhu X, Wu X. BmNPV interacts with super-enhancer regions of the host chromatin to hijack cellular transcription machinery. Nucleic Acids Res 2025; 53:gkaf188. [PMID: 40131775 PMCID: PMC11934923 DOI: 10.1093/nar/gkaf188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025] Open
Abstract
Effective transcriptional activation relies on the spatial interaction between specific DNA elements. DNA interactions have also been observed between DNA viruses and their hosts, with limited understanding of the involved details. Baculovirus is a representative species of DNA virus and has been reported to interact with the host genome in our previous study. However, the biological significance of the baculovirus-host trans-species DNA interaction and its underlying mechanisms remain elusive. Here, using Bombyx mori nucleopolyhedrovirus (BmNPV) as the model virus, we combine epigenome, transcriptome, and biochemical assays to investigate the baculovirus-host DNA interaction. Our data show that BmNPV hijacks the transcriptional regulatory capacity of host super-enhancers (SEs) by physically interacting with these regions on the host genome. This results in the usurpation of the activating capacity of an SE-binding transcription factor GATA by the virus, thereby impairing the SE-induced specific transcriptional activation of the target antiviral genes. Moreover, the hijacked regulatory capacity is spread on BmNPV genome through cis-interaction of viral DNA, leading to enhanced viral gene expression. Overall, our results provide novel insights into the intricate interplay of viruses with host gene expression regulatory networks and broaden the vision in the mechanisms of viral exploitation on cellular machinery.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingyang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tian Yang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Wu L, Zhao L, Feng Y, Wu J, Hua X, Wang W, Wang Y, Li Z, Xia Q, Lin P, Shen G. SGDAcn is a suppressor for silk gland endoreplication and development. INSECT SCIENCE 2025. [PMID: 40091098 DOI: 10.1111/1744-7917.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
Silkworm silk gland cells undergo multiple rounds of endoreplication, a process in which the genome is duplicated without cell division, leading to cellular polyploidization. This results in the accumulation of genomic DNA, serving as the foundation for rapid silk proteins synthesis. For the first time, we report a previously uncharacterized gene, SGDAcn, in the silkworm silk gland that clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9-mediated SGDAcn knockout in the posterior silk gland increased cell size and enhanced silk production. SGDAcn knockout facilitated the progression of endoreplication by upregulating the expression of various cyclin genes and promoting energy metabolism, leading to a substantial increase in fibroin gene expression and its transcription factor Dimm, as well as the stimulation of ribosome biogenesis for messenger RNA translation and enhancement of eukaryotic translation initiation factors for protein synthesis. Our findings demonstrate that SGDAcn influences endoreplication, cell growth, and nucleolus size through SGDAcn-EGFR/PI3K/AKT and SGDAcn-NF-κB signaling pathways. Overall, SGDAcn acts as a negative regulator of silk gland development, affecting cell size and protein synthesis, thus modulating silk production. These mechanisms might be conserved in cell growth and progression, making an attractive target for genetic editing to improve silk yield in silkworms and potentially in mammalian cell growth regulation.
Collapse
Affiliation(s)
- Lin Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Li Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yuting Feng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jinxin Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xiaoting Hua
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wei Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Yuancheng Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Zhiqing Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing), Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Xu Y, Du N, Xu L, Zhao L, Fan T, Wei T, Pu Q, Liu S. Let-7 microRNA targets BmCentrin to modulate the development and functionality of the middle silk gland in the silkworm, Bombyx mori. INSECT SCIENCE 2025; 32:95-114. [PMID: 38812265 DOI: 10.1111/1744-7917.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024]
Abstract
The silk gland of the silkworm Bombyx mori serves as a valuable model for investigating the morphological structure and physiological functions of organs. Previous studies have demonstrated the notable regulatory role of let-7 microRNA in the silk gland, but its specific molecular mechanism remains to be elucidated across different segments of this organ. In this study, we further investigated the functional mechanism of let-7 in the middle silk gland (MSG). The MSG of a let-7 knockout strain was analyzed using a combined proteomic and metabolomic technique, revealing the enrichment of differential proteins and metabolites in the DNA synthesis and energy metabolism pathways. BmCentrin was identified as a novel target gene of let-7 in the MSG, and its downregulation inhibited the proliferation of BmN4-SID1 cells, which is exactly opposite to the role of let-7 in these cells. CRISPR/Cas9 genome editing and transgenic technologies were employed to manipulate BmCentrin in the MSG. Knockout of BmCentrin led to severe MSG atrophy, whereas the overexpression of BmCentrin resulted in beaded MSG. Further measurements of these knockout or overexpression strains revealed significant changes in the expression levels of sericin protein genes, the weight of the cocoon and the mechanical properties of the silk. Investigating the biological role of BmCentrin in the silk gland offers valuable insights for elucidating the molecular mechanisms by which let-7 controls silk gland development and silk protein synthesis in the silkworm.
Collapse
Affiliation(s)
- Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Na Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lili Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Sun B, Zhang H, Chen C, Yan J, Hong J, Xu J, Chen K, Sun L. β-fructofuranosidase regulation in silkworm silk gland development: Implications for silk gland morphogenesis and silk production. Int J Biol Macromol 2024; 285:138309. [PMID: 39631599 DOI: 10.1016/j.ijbiomac.2024.138309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
This study investigates the impact of β-fructofuranosidase (Bmsuc1) on the development of the silk gland in silkworms (Bombyx mori). Previous research shows that Bmsuc1 is highly expressed in the silk glands and may be involved in silk gland development and protein synthesis. However, the precise mechanism by which Bmsuc1 regulates silk gland development remains unclear. This study specifically used RNA interference to inhibit Bmsuc1 expression in silkworm larvae. The results revealed that silencing Bmsuc1 led to significant shortening of the anterior silk gland cells, left and right side size asymmetrical development of the middle silk gland, and alterations in cellular and inner membrane layer thickness. Furthermore, the glucose and fructose levels in the silk gland were significantly reduced, reducing cocoon weight. The interference of Bmsuc1 also triggers carbohydrate metabolism-related genes, beta-hexosaminidase subunit (HEXA-β) and glucose-6-phosphatase (G6Pase), which were upregulated. In addition, cell cycle-related genes, Cyclin E and cyclin-dependent kinase 2 (CDK2), were downregulated. These findings provide a new theoretical foundation for understanding the molecular mechanisms of silk gland development and offer insights into improving silk yield.
Collapse
Affiliation(s)
- Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Hongying Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Ceru Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiaxin Yan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jindie Hong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jingqi Xu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Fei S, Awais MM, Zou J, Xia J, Wang Y, Kong Y, Feng M, Sun J. Single-nucleus RNA sequencing reveals midgut cellular heterogeneity and transcriptional profiles in Bombyx mori cytoplasmic polyhedrosis virus infection. INSECT SCIENCE 2024. [PMID: 39523555 DOI: 10.1111/1744-7917.13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
The gut is not only used by insects as an organ for the digestion of food and absorption of nutrients but also as an important barrier against the invasion and proliferation of pathogenic microorganisms. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), an insect-specific virus, predominantly colonizes the midgut epithelial cells of the silkworm, thereby jeopardizing its normal growth. However, there is limited knowledge of the cellular immune responses to viral infection and whether the infection is promoted or inhibited by different types of cells in the silkworm midgut. In this study, we used single-nucleus RNA sequencing to identify representative enteroendocrine cells, enterocytes, and muscle cell types in the silkworm midgut. In addition, by analyzing the transcriptional profiles of various subpopulations in the infected and uninfected groups, we found that BmCPV infection suppresses the response of the antiviral pathways and induces the expression of BmHSP70, which plays a role in promoting BmCPV replication. However, certain immune genes in the midgut of the silkworm, such as BmLebocin3, were induced upon viral infection, and downregulation of BmLEB3 using RNA interference promoted BmCPV replication in the midgut of B. mori. These results suggest that viral immune evasion and active host resistance coexist in BmCPV-infected silkworms. We reveal the richness of cellular diversity in the midgut of B. mori larvae by single-nucleus RNA sequencing analysis and provide new insights into the complex interactions between the host and the virus at the single-cell level.
Collapse
Affiliation(s)
- Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinglei Zou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yeyuan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yibing Kong
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Yan Y, Zhu S, Jia M, Chen X, Qi W, Gu F, Valencak TG, Liu JX, Sun HZ. Advances in single-cell transcriptomics in animal research. J Anim Sci Biotechnol 2024; 15:102. [PMID: 39090689 PMCID: PMC11295521 DOI: 10.1186/s40104-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.
Collapse
Affiliation(s)
- Yunan Yan
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenlingli Qi
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Teresa G Valencak
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Agency for Health and Food Safety Austria, 1220, Vienna, Austria
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Ma Y, Li Q, Tang Y, Zhang Z, Liu R, Luo Q, Wang Y, Hu J, Chen Y, Li Z, Zhao C, Ran Y, Mu Y, Li Y, Xu X, Gong Y, He Z, Ba Y, Guo K, Dong K, Li X, Tan W, Zhu Y, Xiang Z, Xu H. The architecture of silk-secreting organs during the final larval stage of silkworms revealed by single-nucleus and spatial transcriptomics. Cell Rep 2024; 43:114460. [PMID: 38996068 DOI: 10.1016/j.celrep.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Natural silks are renewable proteins with impressive mechanical properties and biocompatibility that are useful in various fields. However, the cellular and spatial organization of silk-secreting organs remains unclear. Here, we combined single-nucleus and spatially resolved transcriptomics to systematically map the cellular and spatial composition of the silk glands (SGs) of mulberry silkworms late in larval development. This approach allowed us to profile SG cell types and cell state dynamics and identify regulatory networks and cell-cell communication related to efficient silk protein synthesis; key markers were validated via transgenic approaches. Notably, we demonstrated the indispensable role of the ecdysone receptor (ultraspiracle) in regulating endoreplication in SG cells. Our atlas presents the results of spatiotemporal analysis of silk-secreting organ architecture late in larval development; this atlas provides a valuable reference for elucidating the mechanism of efficient silk protein synthesis and developing sustainable products made from natural silk.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qingjun Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiyun Tang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiyong Zhang
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Rongpeng Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qin Luo
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuting Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jie Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuqin Chen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhiwei Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chen Zhao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yiting Ran
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuanyuan Mu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yinghao Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoqing Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yuyan Gong
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Zihan He
- Beijing SeekGene BioSciences Co., Ltd., Beijing 102206, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai 201212, China
| | - Kaiqi Guo
- Shanghai OE Biotech. Co., Ltd., Shanghai 201212, China
| | - Keshu Dong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Wei Tan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yumeng Zhu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
12
|
Liu W, Li Q. Single-cell transcriptomics dissecting the development and evolution of nervous system in insects. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101201. [PMID: 38608931 DOI: 10.1016/j.cois.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Insects can display a vast repertoire of complex and adaptive behaviors crucial for survival and reproduction. Yet, how the neural circuits underlying insect behaviors are assembled throughout development and remodeled during evolution remains largely obscure. The advent of single-cell transcriptomics has opened new paths to illuminate these historically intractable questions. Insect behavior is governed by its brain, whose functional complexity is realized through operations across multiple levels, from the molecular and cellular to the circuit and organ. Single-cell transcriptomics enables dissecting brain functions across all these levels and allows tracking regulatory dynamics throughout development and under perturbation. In this review, we mainly focus on the achievements of single-cell transcriptomics in dissecting the molecular and cellular architectures of nervous systems in representative insects, then discuss its applications in tracking the developmental trajectory and functional evolution of insect brains.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Yunnan Key Laboratory of Biodiversity Information, Kunming, China.
| | - Qiye Li
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Wu Q, Jiang X, Wang LX, Liu ZY, Yang WY, Jing C, Xiao Y, Zhu Y, Dong ZQ, Lu C, Pan MH, Chen P. Bombyx moriSuppressor of Hairless is involved in the regulation of the silkworm cell cycle and endoreplication of the silk glands. Int J Biol Macromol 2024; 268:131819. [PMID: 38688334 DOI: 10.1016/j.ijbiomac.2024.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The Notch signaling pathway is important in cell cycle regulation and cell proliferation. The transcriptional repressor Suppressor of Hairless [Su(H)] is a molecular switch for downstream target genes of the Notch signaling pathway but the regulatory mechanism of the Su(H) gene in the cell cycle is unclear. We determined the function of the Notch signaling pathway and Bombyx mori Su(H) [BmSu(H)] in the regulation of the silkworm cell cycle. Inhibition of Notch signaling promoted the replication of DNA in silkworm gland cells and expression of the BmSu(H) gene was significantly reduced. Overexpression of the BmSu(H) gene inhibited DNA replication and cell proliferation of silkworm cells, whereas knockout of the BmSu(H) gene promoted DNA replication and cell proliferation. Knockout of the BmSu(H) in silkworms improved the efficiency of silk gland cell endoreplication and increased important economic traits. We demonstrated that BmSu(H) protein can directly bind to the promoters of BmCyclinA, BmCyclinE and BmCDK1 genes, inhibiting or promoting their transcription at the cell and individual level. This study identified molecular targets for genetic improvement of the silkworm and also provided insights into the regulatory mechanism of the cell cycle.
Collapse
Affiliation(s)
- Qiao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Xia Jiang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Lan-Xing Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhen-Ye Liu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Yu Yang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cai Jing
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yan Zhu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Peng Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
14
|
Wang X, Zhai Y, Zheng H. Deciphering the cellular heterogeneity of the insect brain with single-cell RNA sequencing. INSECT SCIENCE 2024; 31:314-327. [PMID: 37702319 DOI: 10.1111/1744-7917.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.
Collapse
Affiliation(s)
- Xiaofei Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and In-sect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Long D, Liu R, Huang Y, Fu A, Zhang Y, Hao Z, Li Q, Xu H, Xiang Z, Zhao A. An efficient and safe strategy for germ cell-specific automatic excision of foreign DNA in F 1 hybrid transgenic silkworms. INSECT SCIENCE 2024; 31:28-46. [PMID: 37356084 DOI: 10.1111/1744-7917.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/27/2023]
Abstract
The safety of transgenic technology is a major obstacle in the popularization and use of transgenic silkworms and their products. In sericulture, only the first filial generation (F1 ) hybrid eggs produced by cross-breeding Japanese and Chinese original strains are usually used for the large-scale breeding of silkworms, but this may result in uncontrolled transgene dispersal during the popularization and application of the F1 hybrid transgenic eggs. To address this issue, we developed a safe and efficient strategy using the GAL4/Upstream activating sequence (UAS) system, the FLP/flippase recognition target (FRT) system, and the gonad-specific expression gene promoters (RSHP1p and Nanosp) for the germ cell-specific automatic excision of foreign DNA in the F1 hybrid transgenic silkworms. We established 2 types of activator strains, R1p::GAL4-Gr and Nsp::GAL4-Gr, containing the testis-specific GAL4 gene expression cassettes driven by RSHP1p or Nanosp, respectively, and 1 type of effector strain, UAS::FLP-Rg, containing the UAS-linked FLP gene expression cassette. The FLP recombinase-mediated sperm-specific complete excision of FRT-flanked target DNA in the F1 double-transgenic silkworms resulting from the hybridization of R1p::GAL4-Gr and UAS::FLP-Rg was 100%, whereas the complete excision efficiency resulting from the hybridization of Nsp::GAL4-Gr and UAS::FLP-Rg ranged from 13.73% to 80.3%. Additionally, we identified a gene, sw11114, that is expressed in both testis and ovary of Bombyx mori, and can be used to establish novel gonad-specific expression systems in transgenic silkworms. This strategy has the potential to fundamentally solve the safety issue in the production of F1 transgenic silkworm eggs and provides an important reference for the safety of transgenic technology in other insect species.
Collapse
Affiliation(s)
- Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Rongpeng Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yang Huang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Anyao Fu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Yuli Zhang
- Guangxi Institute of Sericulture Science, Nanning, Guangxi, China
| | - Zhanzhang Hao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qiang Li
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia, USA
| | - Hanfu Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Lu K, Pan Y, Shen J, Yang L, Zhan C, Liang S, Tai S, Wan L, Li T, Cheng T, Ma B, Pan G, He N, Lu C, Westhof E, Xiang Z, Han MJ, Tong X, Dai F. SilkMeta: a comprehensive platform for sharing and exploiting pan-genomic and multi-omic silkworm data. Nucleic Acids Res 2024; 52:D1024-D1032. [PMID: 37941143 PMCID: PMC10767832 DOI: 10.1093/nar/gkad956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The silkworm Bombyx mori is a domesticated insect that serves as an animal model for research and agriculture. The silkworm super-pan-genome dataset, which we published last year, is a unique resource for the study of global genomic diversity and phenotype-genotype association. Here we present SilkMeta (http://silkmeta.org.cn), a comprehensive database covering the available silkworm pan-genome and multi-omics data. The database contains 1082 short-read genomes, 546 long-read assembled genomes, 1168 transcriptomes, 294 phenotype characterizations (phenome), tens of millions of variations (variome), 7253 long non-coding RNAs (lncRNAs), 18 717 full length transcripts and a set of population statistics. We have compiled publications on functional genomics research and genetic stock deciphering (mutant map). A range of bioinformatics tools is also provided for data visualization and retrieval. The large batch of omics data and tools were integrated in twelve functional modules that provide useful strategies and data for comparative and functional genomics research. The interactive bioinformatics platform SilkMeta will benefit not only the silkworm but also the insect biology communities.
Collapse
Affiliation(s)
- Kunpeng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yifei Pan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Lin Yang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Chengyu Zhan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Shubo Liang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | | | - Linrong Wan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Eric Westhof
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire, UPR9002 CNRS, Université de Strasbourg, Strasbourg 67084, France
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Min-Jin Han
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Zhang K, Man X, Hu X, Tan P, Su J, Abbas MN, Cui H. GATA binding protein 6 regulates apoptosis in silkworms through interaction with poly (ADP-ribose) polymerase. Int J Biol Macromol 2024; 256:128515. [PMID: 38040165 DOI: 10.1016/j.ijbiomac.2023.128515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The GATA family of genes plays various roles in crucial biological processes, such as development, cell differentiation, and disease progression. However, the roles of GATA in insects have not been thoroughly explored. In this study, a genome-wide characterization of the GATA gene family in the silkworm, Bombyx mori, was conducted, revealing lineage-specific expression profiles. Notably, GATA6 is ubiquitously expressed across various developmental stages and tissues, with predominant expression in the midgut, ovaries, and Malpighian tubules. Overexpression of GATA6 inhibits cell growth and promotes apoptosis, whereas, in contrast, knockdown of PARP mitigates the apoptotic effects driven by GATA6 overexpression. Co-immunoprecipitation (co-IP) has demonstrated that GATA6 can interact with Poly (ADP-ribose) polymerase (PARP), suggesting that GATA6 may induce cell apoptosis by activating the enzyme's activity. These findings reveal a dynamic and regulatory relationship between GATA6 and PARP, suggesting a potential role for GATA6 as a key regulator in apoptosis through its interaction with PARP. This research deepens the understanding of the diverse roles of the GATA family in insects, shedding light on new avenues for studies in sericulture and pest management.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Xu Man
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Peng Tan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2023; 13:91. [PMID: 38201295 PMCID: PMC10777908 DOI: 10.3390/cells13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Single-cell techniques are a promising way to unravel the complexity and heterogeneity of transcripts at the cellular level and to reveal the composition of different cell types and functions in a tissue or organ. In recent years, advances in single-cell RNA sequencing (scRNA-seq) have further changed our view of biological systems. The application of scRNA-seq in insects enables the comprehensive characterization of both common and rare cell types and cell states, the discovery of new cell types, and revealing how cell types relate to each other. The recent application of scRNA-seq techniques to insect tissues has led to a number of exciting discoveries. Here we provide an overview of scRNA-seq and its application in insect research, focusing on biological applications, current challenges, and future opportunities to make new discoveries with scRNA-seq in insects.
Collapse
Affiliation(s)
- Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junaid Iqbal
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Li J, Guo J, Wang BX, Zhang Y, Yao Q, Cheng DH, Lu YH. Wound Microenvironment Self-Adjusting Hydrogels with Thermo-Sensitivity for Promoting Diabetic Wound Healing. Gels 2023; 9:987. [PMID: 38131973 PMCID: PMC10742986 DOI: 10.3390/gels9120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The hard-healing chronic wounds of diabetics are still one of the most intractable problems in clinical skin injury repair. Wound microenvironments directly affect wound healing speed, but conventional dressings exhibit limited efficacy in regulating the wound microenvironment and facilitating healing. To address this serious issue, we designed a thermo-sensitive drug-controlled hydrogel with wound self-adjusting effects, consisting of a sodium alginate (SA), Antheraeapernyi silk gland protein (ASGP) and poly(N-isopropylacrylamide) (PNIPAM) for a self-adjusting microenvironment, resulting in an intelligent releasing drug which promotes skin regeneration. PNIPAM has a benign temperature-sensitive effect. The contraction, drugs and water molecules expulsion of hydrogel were generated upon surpassing lower critical solution temperatures, which made the hydrogel system have smart drug release properties. The addition of ASGP further improves the biocompatibility and endows the thermo-sensitive drug-controlled hydrogel with adhesion. Additionally, in vitro assays demonstrate that the thermo-sensitive drug-controlled hydrogels have good biocompatibility, including the ability to promote the adhesion and proliferation of human skin fibroblast cells. This work proposes an approach for smart drug-controlled hydrogels with a thermo response to promote wound healing by self-adjusting the wound microenvironment.
Collapse
Affiliation(s)
- Jia Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (J.L.); (Q.Y.)
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (J.L.); (Q.Y.)
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Bo-Xiang Wang
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; (J.L.); (Q.Y.)
| | - De-Hong Cheng
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| | - Yan-Hua Lu
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Liaodong University, Dandong 118000, China; (B.-X.W.); (Y.Z.); (D.-H.C.); (Y.-H.L.)
- School of Textiles and Garment, Liaodong University, Dandong 118003, China
| |
Collapse
|
20
|
Zhang Q, Hua X, Sun Y, Lin Z, Cao Y, Zhao P, Xia Q. Dynamic chromatin conformation and accessibility changes mediate the spatial-specific gene regulatory network in Bombyx mori. Int J Biol Macromol 2023; 240:124415. [PMID: 37060980 DOI: 10.1016/j.ijbiomac.2023.124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Silk gland genes of Bombyx mori can have strict spatial expression patterns, which impact their functions and silk quality; however, our understanding of their regulation mechanisms is currently insufficient. To address this, the middle silk gland (MSG) and posterior silk gland (PSG) of the silkworm were investigated. Gene ontology annotation showed that spatially specific expressed genes were involved in the formation of H3k9me and chromatin topology. Chromatin conformation data generated by Hi-C showed that the topologically associated domain boundaries around FibL and Sericin1 genes were significantly different between MSG and PSG. Changes in chromatin conformation led to changes in chromatin activity, which significantly affected the expression of nearby genes in silkworm. Chromatin accessibility regions of MSG and PSG were analyzed using FAIRE-seq, and 1006 transcription factor motifs were identified in open chromatin regions. Furthermore, the spatial-specific expression patterns of silk gland genes were mainly associated with homeobox-contained transcription factors, such as POU-M2, which was specifically bound and relatively highly expressed in the MSG. The regulatory network mediated by POU-M2 regulated most of the spatial-specific expressed genes in MSG, such as ADH1. These results can aid in improving silk performance, optimizing silkworm breeding, and improving the gene spatial regulatory model research for insects.
Collapse
Affiliation(s)
- Quan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaoting Hua
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yueting Sun
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China
| | - Zhongying Lin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yang Cao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
21
|
Hu W, Jia A, Ma S, Zhang G, Wei Z, Lu F, Luo Y, Zhang Z, Sun J, Yang T, Xia T, Li Q, Yao T, Zheng J, Jiang Z, Xu Z, Xia Q, Wang Y. A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk. Nat Commun 2023; 14:837. [PMID: 36792670 PMCID: PMC9932165 DOI: 10.1038/s41467-023-36545-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
The process of natural silk production in the spider major ampullate (Ma) gland endows dragline silk with extraordinary mechanical properties and the potential for biomimetic applications. However, the precise genetic roles of the Ma gland during this process remain unknown. Here, we performed a systematic molecular atlas of dragline silk production through a high-quality genome assembly for the golden orb-weaving spider Trichonephila clavata and a multiomics approach to defining the Ma gland tri-sectional architecture: Tail, Sac, and Duct. We uncovered a hierarchical biosynthesis of spidroins, organic acids, lipids, and chitin in the sectionalized Ma gland dedicated to fine silk constitution. The ordered secretion of spidroins was achieved by the synergetic regulation of epigenetic and ceRNA signatures for genomic group-distributed spidroin genes. Single-cellular and spatial RNA profiling identified ten cell types with partitioned functional division determining the tri-sectional organization of the Ma gland. Convergence analysis and genetic manipulation further validated that this tri-sectional architecture of the silk gland was analogous across Arthropoda and inextricably linked with silk formation. Collectively, our study provides multidimensional data that significantly expand the knowledge of spider dragline silk generation and ultimately benefit innovation in spider-inspired fibers.
Collapse
Affiliation(s)
- Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Anqiang Jia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Guoqing Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhaoyuan Wei
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Fang Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yongjiang Luo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiahe Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Tianfang Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - TingTing Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qinhui Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Ting Yao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jiangyu Zheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zijie Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Zehui Xu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| | - Yi Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
22
|
Ashraf H, Qamar A, Maheshwari N. Attenuation of hexaconazole induced oxidative stress by folic acid, malic acid and ferrocenecarboxaldehyde in an invertebrate model Bombyx mori. Heliyon 2022; 8:e12577. [PMID: 36636222 PMCID: PMC9830160 DOI: 10.1016/j.heliyon.2022.e12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Fungicides are a class of pesticides used to ward off fungal diseases from agricultural crops to achieve maximum productivity. These chemicals are quite efficient in controlling diseases; however, the excessive use of these affects non-target organisms as well. In this study, Bombyx mori was utilized to investigate the effect of the pesticide hexaconazole (HEX) on the antioxidant system of this organism and also to find ways to mitigate it. On oral exposure to this chemical, a significant reduction in antioxidants, CAT, GPX, GSH, and SOD in the gut, fat body, and silk gland was observed. The HEX treatment also resulted in lipid peroxidation (LPO) in all the three tissues. To mitigate this toxicity and protect the silkworm from oxidative stress, we tested three compounds, namely folic acid, ferrocenecarboxaldehyde, and malic acid having known antioxidant potential. Folic acid provided significant protection against HEX-induced toxicity. Ferrocenecarboxaldehyde and malic acid proved to be ill-efficient in controlling oxidative stress, with ferrocenecarboxaldehyde being the least effective of the three. Folic acid was also efficient in controlling LPO up to a considerable level. Ferrocenecarboxaldehyde and malic acid also prevented LPO less efficiently than folic acid. Overall folic acid was the only compound that mitigated HEX-induced oxidative stress in silkworm with statistical significance in all the tissues viz. gut, fat body, and silk gland.
Collapse
Affiliation(s)
- Hashim Ashraf
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Ayesha Qamar
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India,Corresponding author.
| | - Nikhil Maheshwari
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
23
|
Ma Y, Zeng W, Ba Y, Luo Q, Ou Y, Liu R, Ma J, Tang Y, Hu J, Wang H, Tang X, Mu Y, Li Q, Chen Y, Ran Y, Xiang Z, Xu H. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat Commun 2022; 13:3316. [PMID: 35680954 PMCID: PMC9184679 DOI: 10.1038/s41467-022-31003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The silk gland of the domesticated silkworm Bombyx mori, is a remarkable organ that produces vast amounts of silk with exceptional properties. Little is known about which silk gland cells execute silk protein synthesis and its precise spatiotemporal control. Here, we use single-cell RNA sequencing to build a comprehensive cell atlas of the silkworm silk gland, consisting of 14,972 high-quality cells representing 10 distinct cell types, in three early developmental stages. We annotate all 10 cell types and determine their distributions in each region of the silk gland. Additionally, we decode the developmental trajectory and gene expression status of silk gland cells. Finally, we discover marker genes involved in the regulation of silk gland development and silk protein synthesis. Altogether, this work reveals the heterogeneity of silkworm silk gland cells and their gene expression dynamics, affording a deeper understanding of silk-producing organs at the single-cell level.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Qin Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yao Ou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jingwen Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyun Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haomiao Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xuan Tang
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Yuanyuan Mu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Qingjun Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqin Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiting Ran
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|