1
|
Di Talia S. Developmental Control of Cell Cycle and Signaling. Cold Spring Harb Perspect Biol 2025; 17:a041499. [PMID: 38858070 PMCID: PMC11864111 DOI: 10.1101/cshperspect.a041499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In most species, the earliest stages of embryogenesis are characterized by rapid proliferation, which must be tightly controlled with other cellular processes across the large scale of the embryo. The study of this coordination has recently revealed new mechanisms of regulation of morphogenesis. Here, I discuss progress on how the integration of biochemical and mechanical signals leads to the proper positioning of cellular components, how signaling waves ensure the synchronization of the cell cycle, and how cell cycle transitions are properly timed. Similar concepts are emerging in the control of morphogenesis of other tissues, highlighting both common and unique features of early embryogenesis.
Collapse
Affiliation(s)
- Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
2
|
Matsuoka Y, Nakamura T, Watanabe T, Barnett AA, Tomonari S, Ylla G, Whittle CA, Noji S, Mito T, Extavour CG. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus. Development 2025; 152:dev199746. [PMID: 39514640 PMCID: PMC11829760 DOI: 10.1242/dev.199746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/05/2024] [Indexed: 11/16/2024]
Abstract
Studies of traditional model organisms such as the fruit fly Drosophila melanogaster have contributed immensely to our understanding of the genetic basis of developmental processes. However, the generalizability of these findings cannot be confirmed without functional genetic analyses in additional organisms. Direct genome editing using targeted nucleases has the potential to transform hitherto poorly understood organisms into viable laboratory organisms for functional genetic study. To this end, we present a method to induce targeted genome knockout and knock-in of desired sequences in an insect that serves as an informative contrast to Drosophila, the cricket Gryllus bimaculatus. The efficiency of germline transmission of induced mutations is comparable with that reported for other well-studied laboratory organisms, and knock-ins targeting introns yield viable, fertile animals in which knock-in events are directly detectable by visualization of a fluorescent marker in the expression pattern of the targeted gene. Combined with the recently assembled and annotated genome of this cricket, this knock-in/knockout method increases the viability of G. bimaculatus as a tractable system for functional genetics in a basally branching insect.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Taro Nakamura
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Takahito Watanabe
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
- Bio-Innovation Research Center, Tokushima University, 2272-2 Ishii, Ishii-cho, Myozai-gun, Tokushima 779-3233, Japan
| | - Austen A. Barnett
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sayuri Tomonari
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Guillem Ylla
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Carrie A. Whittle
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sumihare Noji
- Tokushima University, 2-14 Shinkura-cho, Tokushima City 770-8501, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Kim S, Amini R, Yen ST, Pospíšil P, Boutillon A, Deniz IA, Campàs O. A nuclear jamming transition in vertebrate organogenesis. NATURE MATERIALS 2024; 23:1592-1599. [PMID: 39134649 DOI: 10.1038/s41563-024-01972-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/11/2024] [Indexed: 11/01/2024]
Abstract
Jamming of cell collectives and associated rigidity transitions have been shown to play a key role in tissue dynamics, structure and morphogenesis. Cellular jamming is controlled by cellular density and the mechanics of cell-cell contacts. However, the contribution of subcellular organelles to the physical state of the emergent tissue is unclear. Here we report a nuclear jamming transition in zebrafish retina and brain tissues, where physical interactions between highly packed nuclei restrict cellular movements and control tissue mechanics and architecture. Computational modelling suggests that the nuclear volume fraction and anisotropy of cells control the emerging tissue physical state. Analysis of tissue architecture, mechanics and nuclear movements during eye development show that retina tissues undergo a nuclear jamming transition as they form, with increasing nuclear packing leading to more ordered cellular arrangements, reminiscent of the crystalline cellular packings in the functional adult eye. Our results reveal an important role of the cell nucleus in tissue mechanics and architecture.
Collapse
Affiliation(s)
- Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rana Amini
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Shuo-Ting Yen
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Petr Pospíšil
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Arthur Boutillon
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Ilker Ali Deniz
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Bar-Lev Viterbo A, Wexler JR, Mayost Lev-Ari O, Chipman AD. Early embryonic development of the German cockroach Blattella germanica. EvoDevo 2024; 15:14. [PMID: 39462430 PMCID: PMC11520056 DOI: 10.1186/s13227-024-00234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Early embryogenesis is characterized by dramatic cell proliferation and movement. In most insects, early embryogenesis includes a phase called the uniform blastoderm, during which cells evenly cover the entirety of the egg. However, the embryo of the German cockroach, Blattella germanica, like those of many insects within the super order Polyneoptera, does not have a uniform blastoderm; instead, its first cells condense rapidly at the site of a future germband. We investigated early development in this species in order to understand how early gene expression is or is not conserved in these insect embryos with distinct early cell behaviors. RESULTS We present a detailed time series of nuclear division and distribution from fertilization through germband formation and report patterns of expression for the early patterning genes hunchback, caudal, and twist in order to understand early polarization and mesoderm formation. We show a detailed time course of the spatial expression of two genes involved in the segmentation cascade, hedgehog and even-skipped, and demonstrate two distinct dynamics of the segmentation process. CONCLUSIONS Despite dramatic differences in cell distribution between the blastoderms of many Polyneopteran insects and those of more well-studied developmental models, expression patterns of early patterning genes are mostly similar. Genes associated with axis determination in other insects are activated relatively late and are probably not maternally deposited. The two phases of segmentation-simultaneous and sequential-might indicate a broadly conserved mode of morphological differentiation. The developmental time course we present here should be of value for further investigation into the causes of this distinct blastoderm type.
Collapse
Affiliation(s)
- Ariel Bar-Lev Viterbo
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Judith R Wexler
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Orel Mayost Lev-Ari
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| |
Collapse
|
5
|
Chen R, Stainier W, Dufourt J, Lagha M, Lehmann R. Direct observation of translational activation by a ribonucleoprotein granule. Nat Cell Biol 2024; 26:1322-1335. [PMID: 38965420 PMCID: PMC11321996 DOI: 10.1038/s41556-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Biomolecular condensates organize biochemical processes at the subcellular level and can provide spatiotemporal regulation within a cell. Among these, ribonucleoprotein (RNP) granules are storage hubs for translationally repressed mRNA. Whether RNP granules can also activate translation and how this could be achieved remains unclear. Here, using single-molecule imaging, we demonstrate that the germ cell-determining RNP granules in Drosophila embryos are sites for active translation of nanos mRNA. Nanos translation occurs preferentially at the germ granule surface with the 3' UTR buried within the granule. Smaug, a cytosolic RNA-binding protein, represses nanos translation, which is relieved when Smaug is sequestered to the germ granule by the scaffold protein Oskar. Together, our findings uncover a molecular process by which RNP granules achieve localized protein synthesis through the compartmentalized loss of translational repression.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York, NY, USA
| | - William Stainier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Schindler-Johnson M, Petridou NI. Collective effects of cell cleavage dynamics. Front Cell Dev Biol 2024; 12:1358971. [PMID: 38559810 PMCID: PMC10978805 DOI: 10.3389/fcell.2024.1358971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
A conserved process of early embryonic development in metazoans is the reductive cell divisions following oocyte fertilization, termed cell cleavages. Cell cleavage cycles usually start synchronously, lengthen differentially between the embryonic cells becoming asynchronous, and cease before major morphogenetic events, such as germ layer formation and gastrulation. Despite exhibiting species-specific characteristics, the regulation of cell cleavage dynamics comes down to common controllers acting mostly at the single cell/nucleus level, such as nucleus-to-cytoplasmic ratio and zygotic genome activation. Remarkably, recent work has linked cell cleavage dynamics to the emergence of collective behavior during embryogenesis, including pattern formation and changes in embryo-scale mechanics, raising the question how single-cell controllers coordinate embryo-scale processes. In this review, we summarize studies across species where an association between cell cleavages and collective behavior was made, discuss the underlying mechanisms, and propose that cell-to-cell variability in cell cleavage dynamics can serve as a mechanism of long-range coordination in developing embryos.
Collapse
Affiliation(s)
- Magdalena Schindler-Johnson
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicoletta I. Petridou
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
7
|
Fujii K, Kondo T, Kimura A. Enucleation of the C. elegans embryo revealed dynein-dependent spacing between microtubule asters. Life Sci Alliance 2024; 7:e202302427. [PMID: 37931957 PMCID: PMC10627822 DOI: 10.26508/lsa.202302427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular positioning of the centrosome, a major microtubule-organizing center, is important for cellular functions. One of the features of centrosome positioning is the spacing between centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in Caenorhabditis elegans embryos, a genetic setup was developed to produce enucleated embryos. The centrosome was duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We found that the timely spacing depended on cytoplasmic dynein, and we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also observed dynein-independent but non-muscle myosin II-dependent movement of centrosomes in the later cell cycle phase. The spacing mechanisms revealed in this study are expected to function between centrosomes in general, regardless of the presence of a chromosome/nucleus between them, including centrosome separation and spindle elongation.
Collapse
Affiliation(s)
- Ken Fujii
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Tomo Kondo
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Akatsuki Kimura
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
8
|
Kloc M, Tworzydło W, Szklarzewicz T. Germline and Somatic Cell Syncytia in Insects. Results Probl Cell Differ 2024; 71:47-63. [PMID: 37996672 DOI: 10.1007/978-3-031-37936-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Syncytia are common in the animal and plant kingdoms both under normal and pathological conditions. They form through cell fusion or division of a founder cell without cytokinesis. A particular type of syncytia occurs in invertebrate and vertebrate gametogenesis when the founder cell divides several times with partial cytokinesis producing a cyst (nest) of germ line cells connected by cytoplasmic bridges. The ultimate destiny of the cyst's cells differs between animal groups. Either all cells of the cyst become the gametes or some cells endoreplicate or polyploidize to become the nurse cells (trophocytes). Although many types of syncytia are permanent, the germ cell syncytium is temporary, and eventually, it separates into individual gametes. In this chapter, we give an overview of syncytium types and focus on the germline and somatic cell syncytia in various groups of insects. We also describe the multinuclear giant cells, which form through repetitive nuclear divisions and cytoplasm hypertrophy, but without cell fusion, and the accessory nuclei, which bud off the oocyte nucleus, migrate to its cortex and become included in the early embryonic syncytium.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA.
- The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA.
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA.
| | - Wacław Tworzydło
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
9
|
Abstract
Toll signaling plays a crucial role in pathogen defense throughout the animal kingdom. It was discovered, however, for its function in dorsoventral (DV) axis formation in Drosophila. In all other insects studied so far, but not outside the insects, Toll is also required for DV patterning. However, in insects more distantly related to Drosophila, Toll's patterning role is frequently reduced and substituted by an expanded influence of BMP signaling, the pathway implicated in DV axis formation in all major metazoan lineages. This suggests that Toll was integrated into an ancestral BMP-based patterning system at the base of the insects or during insect evolution. The observation that Toll signaling has an immune function in the extraembryonic serosa, an early differentiating tissue of most insect embryos, suggests a scenario of how Toll was co-opted from an ancestral immune function for its new role in axis formation.
Collapse
Affiliation(s)
- Siegfried Roth
- Institute of Zoology-Developmental Biology, Biocenter, University of Cologne, Cologne, Germany;
| |
Collapse
|
10
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|