1
|
Wu SG, Cui W, Ruan ZY, Ni ZP, Tong ML. Switchable colossal anisotropic thermal expansion in a spin crossover framework. Chem Sci 2025; 16:8845-8852. [PMID: 40255963 PMCID: PMC12004079 DOI: 10.1039/d4sc08032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Advanced materials with tunable thermal expansion properties have garnered significant attention due to their potential applications in thermomechanical sensing and resistance to thermal stress. Here, switchable colossal anisotropic thermal expansion (ATE) behaviors are realized in a Hofmann-type framework [Fe(bpy-NH2){Au(CN)2}2]·iPrOH (Fe·iPrOH, bpy-NH2 = [4,4'-bipyridin]-3-amine) through a three-in-one strategy: a vibrational mechanism, an electronic mechanism and molecular motion. Spin crossover (SCO) centers coordinate with dicyanoaurate linkers to form flexible wine-rack frameworks, which exhibit structural deformations driven by host-guest interactions with iPrOH molecules. By means of the vibrational mechanism, a scissor-like motion driven by the rotation of dicyanoaurate is observed within the rhombic grids, resulting in the emergence of colossal ATE in the high temperature region. When the spin transition comes into play, the electronic mechanism is predominant to form reverse ATE behavior, which is associated with host-guest cooperation involving significant molecular motion of the iPrOH guest and adaptive deformation of the host clathrate. A remarkably high negative thermal expansion coefficient up to -7.49 × 105 M K-1 accompanied by abrupt SCO behavior is observed. As a proof of concept, this study provides a novel perspective for designing dynamic crystal materials with tunable thermomechanical properties by integrating various ATE-related elements into a unified platform.
Collapse
Affiliation(s)
- Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Wen Cui
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zhao-Ping Ni
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
2
|
Wu YY, Xu GY, Yan ZH, Zhou XY, Yang FL, Dai JW, Wu SQ, Li ZY, Sato O. Altered Mode of Structural Changes in Solid Solutions Leading to Dual Modulation: Spin Transition Temperatures and Steps. J Am Chem Soc 2025; 147:14401-14410. [PMID: 40096634 DOI: 10.1021/jacs.5c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of high-density information storage materials requires precise control of electron spin states. Multistep spin-crossover (SCO) materials with multiple stable spin states are prime candidates for this purpose. However, accurate control of the dynamic SCO behavior, including the dual dynamic modulation of the spin transition temperature (Tc) and transition steps, has been a significant hurdle. In this study, we propose a new two-dimensional SCO solid solution system, [FeIII(H0.5LI)2-2x(H0.5LCl)2x]·H2O, where H0.5LX (LX for short) denotes 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, with X being I or Cl and x ranging from 0 to 1. The proposed system exhibits a unique nonmonotonic variation in Tc with x, obtaining a minimum at x = 0.7, allowing fine-tuning of Tc across a 66 K range and control over transition steps from two steps to one step, accomplishing dual modulation. Single-crystal diffraction analysis and periodic density functional theory (DFT) calculations demonstrate that the doped ligand LCl modulates the FeIIIN2O2S2 ligand field with increasing doped LCl ligands during the HS → LS transition in solid solutions, enabling dual dynamic modulation of the Tc and the number of transition steps from two steps to one step through dynamic variation in the structural contraction modes (from b- and c-axis contraction to a-axis contraction). This study motivates the synthetic control of dynamic SCO solid solutions through the altered mode of structural contraction as a complementary route to adjust their SCO behavior.
Collapse
Affiliation(s)
- Ying-Ying Wu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Guang-Yan Xu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Zi-Han Yan
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Xiao-Yong Zhou
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Feng-Lei Yang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Material Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Jing-Wei Dai
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
| | - Osamu Sato
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin 300350, China
- Institute for Materials Chemistry and Engineering & IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Martinez-Martinez A, Albalad J, Resines-Urien E, Sañudo EC, Mariano AL, Fabelo O, Rodríguez-Velamazán JA, Poloni R, Maspoch D, Costa JS. Decoding Framework Dynamics in a Spin Crossover Flexible Metal-Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411201. [PMID: 39901475 DOI: 10.1002/smll.202411201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/14/2025] [Indexed: 02/05/2025]
Abstract
Functional spin crossover (SCO) metal-organic frameworks (MOFs) hold promise for miniaturized spin-based devices due to their tuneable molecule-based properties near room temperature. SCO describes the phenomenon where transition metal ions switch between high spin (HS) and low spin (LS) states upon external stimuli. However, even simple guest molecules like water can significantly alter the properties of these materials. Understanding the interplay between SCO and these molecules is therefore crucial. This work investigates this interplay in a fascinating 3D Fe(II) SCO-MOF, recently reported to exhibit reversible conductivity even in bulk. A combined experimental and computational approach is employed to explore how guest molecule uptake/release influences SCO dynamics including a transition from partial HS/LS to a fully LS state at high temperatures, (named reverse SCO) and ligand disorder-order behavior. The findings reveal a solid-state mechanism that differs from those previously described.
Collapse
Affiliation(s)
| | - Jorge Albalad
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | | | - E Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universidad de Barcelona, C/Martí i Franqués 1-11, Barcelona, 08028, Spain
- IN2UB Institute de Nanociencia i Nanotecnologia, Universitat de Barcelona C/Marti i Franques 1-11, Barcelona, 08028, Spain
| | | | - Oscar Fabelo
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, Grenoble, Cedex 938042, France
| | | | - Roberta Poloni
- CNRS, SIMAP, Univ. Grenoble Alpes, Grenoble, 38000, France
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | | |
Collapse
|
4
|
Shabangu S, Bezrukov AA, Eaby AC, Nikkhah SJ, Darwish S, Nikolayenko VI, Sensharma D, Wang SQ, Vandichel M, Zaworotko MJ. One Step Further: A Flexible Metal-Organic Framework that Functions as a Dual-Purpose Water Vapor Sorbent. ACS MATERIALS LETTERS 2025; 7:433-441. [PMID: 39917083 PMCID: PMC11795622 DOI: 10.1021/acsmaterialslett.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025]
Abstract
We report a water induced phase transformation in a flexible MOF, [Zn3(OH)2(btca)2] (Hbtca = 1H-benzotriazole-5-carboxylic acid), that exhibits a two-step water vapor sorption isotherm associated with water-induced phase transformations. Variable temperature X-ray diffraction studies revealed that the dehydrated phase, LP-β, is almost isostructural with the previously reported solvated phase, LP-α. LP-β reversibly transformed to a partially hydrated phase, NP, at 5% RH, and a fully hydrated phase, LP-γ, at 47% RH. Structural studies reveal that host-guest and guest-guest interactions are involved in the NP, LP-α, and LP-γ phases. The LP-β phase, however, is atypical; molecular modeling studies indicating that it is indeed energetically favorable as a LP structure. To our knowledge, [Zn3(OH)2(btca)2] is only the second sorbent that exhibits water induced LP-NP-LP transformations (after MIL-53) and represents the first regeneration optimized sorbent (ROS) with two steps at RH ranges relevant for both atmospheric water harvesting and dehumidification.
Collapse
Affiliation(s)
- Samuel
M. Shabangu
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Andrey A. Bezrukov
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Alan C. Eaby
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shaza Darwish
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Varvara I. Nikolayenko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Debobroto Sensharma
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Shi-Qiang Wang
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
- Institute
of Materials Research and Engineering, Agency
for Science, Technology and Research, 138634, Singapore
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic
of Ireland
| |
Collapse
|
5
|
Zhao YM, Hu JS, Ji XY, Liu ZK, Yue LT, Yu M, Tao J. Dual Photoswitching of a Diarylethene Ligand-Anchored Hofmann-Type Spin-Crossover Compound. Inorg Chem 2024; 63:22323-22327. [PMID: 39526956 DOI: 10.1021/acs.inorgchem.4c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A diarylethene ligand-anchored two-dimensional Hofmann-type compound [FeII(BTEPy){Pt(CN)4}](CH3OH) (BTEPy = 1,2-bis[2-methyl-5-(4-pyridyl)-3-thienyl]cyclopentene) is synthesized, which undergoes a two-step spin-state transition and dual photoinduced magnetic switching.
Collapse
Affiliation(s)
- Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Xue-Yang Ji
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Ling-Tai Yue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
6
|
Xie KP, Peng ZZ, Ruan ZY, Fan WD, Chen YR, Zheng XD, Zou YB, Wu SG, Xiao ZC. Two 2D spin-crossover coordination polymers constructed by [Pd(SCN) 4] 2- building blocks. Dalton Trans 2024; 53:15681-15687. [PMID: 39248579 DOI: 10.1039/d4dt02005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Two new two-dimensional (2D) coordination polymers, [FeII(L)2{PdII(SCN)4}] (L1 = 2-methoxypyrazine, 1; and L2 = (E)-3-(phenyldiazenyl)pyridine, 2), were successfully constructed by using square-planar [Pd(SCN)4]2- building blocks. Complex 1 exhibits complete and one-step spin-crossover (SCO) behavior, while 2 exhibits incomplete and two-step SCO behavior. Further structural insight into this synergy reveals that the flat/flexing [Fe{Pd(SCN)4}]∞ sheets in 1 and 2 are stabilized by interlayered/intralayered supramolecular interactions.
Collapse
Affiliation(s)
- Kai-Ping Xie
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Zhi-Zhen Peng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Wei-Ding Fan
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Yan-Ru Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Xiao-Dan Zheng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Yu-Bo Zou
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun, Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zi-Cheng Xiao
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou, 516007, P. R. China.
| |
Collapse
|
7
|
Ikeda T, Huang YB, Wu SQ, Zheng W, Xu WH, Zhang X, Ji T, Uematsu M, Kanegawa S, Su SQ, Sato O. Four-step electron transfer coupled spin transition in a cyano-bridged [Fe 2Co 2] square complex. Dalton Trans 2024; 53:15465-15470. [PMID: 39239808 DOI: 10.1039/d4dt01581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The design of molecular functional materials with multi-step magnetic transitions has attracted considerable attention. However, the development of such materials is still infrequent and challenging. Here, a cyano-bridged square Prussian blue complex that exhibits a thermally induced four-step electron transfer coupled spin transition (ETCST) is reported. The magnetic and spectroscopic analyses confirm this multi-step transition. Variable-temperature infrared spectrum suggested the electronic structures in each phase and a four-step transition model is proposed.
Collapse
Affiliation(s)
- Taisuke Ikeda
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yu-Bo Huang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shu-Qi Wu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wenwei Zheng
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Wen-Huang Xu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Xiaopeng Zhang
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tianchi Ji
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mikoto Uematsu
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinji Kanegawa
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Sheng-Qun Su
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Osamu Sato
- Institute for Materials Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Ai Y, Hu ZB, Weng YR, Peng H, Qi JC, Chen XG, Lv HP, Song XJ, Ye HY, Xiong RG, Liao WQ. A Multiferroic Spin-Crossover Molecular Crystal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407822. [PMID: 39104291 DOI: 10.1002/adma.202407822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Spin-crossover (SCO) ferroelectrics with dual-function switches have attracted great attention for significant magnetoelectric application prospects. However, the multiferroic crystals with SCO features have rarely been reported. Herein, a molecular multiferroic Fe(II) crystalline complex [FeII(C8-F-pbh)2] (1-F, C8-F-pbh = (1Z,N'E)-3-F-4-(octyloxy)-N'-(pyridin-2-ylmethylene)-benzo-hydrazonate) showing the coexistence of ferroelectricity, ferroelasticity, and SCO behavior is presented for the first time. By H/F substitution, the low phase transition temperature (270 K) of the non-fluorinated parent compound is significantly increased to 318 K in 1-F, which exhibits a spatial symmetry breaking 222F2 type ferroelectric phase transition with clear room-temperature ferroelectricity. Besides, 1-F also displays a spin transition between high- and low-spin states, accompanied by the d-orbital breaking within the t2g 4eg 2 and t2g 6eg° configuration change of octahedrally coordinated FeII center. Moreover, the 222F2 type ferroelectric phase transition is also a ferroelastic one, verified by the ferroelectric domains reversal and the evolution of ferroelastic domains. To the knowledge, 1-F is the first multiferroic SCO molecular crystal. This unprecedented finding sheds light on the exploration of molecular multistability materials for future smart devices.
Collapse
Affiliation(s)
- Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhao-Bo Hu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 330000, P. R. China
| | - Yan-Ran Weng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hang Peng
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Jun-Chao Qi
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Xian-Jiang Song
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 330000, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
9
|
Liu ZK, Ji XY, Yu M, Li YX, Hu JS, Zhao YM, Yao ZS, Tao J. Proton-Induced Reversible Spin-State Switching in Octanuclear Fe III Spin-Crossover Metal-Organic Cages. J Am Chem Soc 2024; 146:22036-22046. [PMID: 39041064 DOI: 10.1021/jacs.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xue-Yang Ji
- School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, P. R. China
| | - Meng Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Xia Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jie-Sheng Hu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Yu-Meng Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
10
|
Kuppusamy SK, Mizuno A, Kämmerer L, Salamon S, Heinrich B, Bailly C, Šalitroš I, Wende H, Ruben M. Lattice solvent- and substituent-dependent spin-crossover in isomeric iron(II) complexes. Dalton Trans 2024; 53:10851-10865. [PMID: 38826041 DOI: 10.1039/d4dt00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spin-state switching in iron(II) complexes composed of ligands featuring moderate ligand-field strength-for example, 2,6-bi(1H-pyrazol-1-yl)pyridine (BPP)-is dependent on many factors. Herein, we show that spin-state switching in isomeric iron(II) complexes composed of BPP-based ligands-ethyl 2,6-bis(1H-pyrazol-1-yl)isonicotinate (BPP-COOEt, L1) and (2,6-di(1H-pyrazol-1-yl)pyridin-4-yl)methylacetate (BPP-CH2OCOMe, L2)-is dependent on the nature of the substituent at the BPP skeleton. Bi-stable spin-state switching-with a thermal hysteresis width (ΔT1/2) of 44 K and switching temperature (T1/2) = 298 K in the first cycle-is observed for complex 1·CH3CN composed of L1 and BF4- counter anions. Conversely, the solvent-free isomeric counterpart of 1·CH3CN-complex 2a, composed of L2 and BF4- counter anions-was trapped in the high-spin (HS) state. For one of the polymorphs of complex 2b·CH3CN-2b·CH3CN-Y, Y denotes yellow colour of the crystals-composed of L2 and ClO4- counter anions, a gradual and non-hysteretic SCO is observed with T1/2 = 234 K. Complexes 1·CH3CN and 2b·CH3CN-Y also underwent light-induced spin-state switching at 5 K due to the light-induced excited spin-state trapping (LIESST) effect. Structures of the low-spin (LS) and HS forms of complex 1·CH3CN revealed that spin-state switching goes hand-in-hand with pronounced distortion of the trans-N{pyridyl}-Fe-N{pyridyl} angle (ϕ), whereas such distortion is not observed for 2b·CH3CN-Y. This observation points that distortion is one of the factors making the spin-state switching of 1·CH3CN hysteretic in the solid state. The observation of bi-stable spin-state switching with T1/2 centred at room temperature for 1·CH3CN indicates that technologically relevant spin-state switching profiles based on mononuclear iron(II) complexes can be obtained.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Asato Mizuno
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lea Kämmerer
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Soma Salamon
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Corinne Bailly
- Service de Radiocristallographie, Fédération de Chimie Le Bel UAR2042 CNRS-Université de Strasbourg, 1 rue Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Heiko Wende
- University of Duisburg-Essen, Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstraße 1, 47057 Duisburg, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| |
Collapse
|
11
|
Liu C, Li Y, Tang Z, Gao KG, Xie J, Tao J, Yao ZS. High-performance Pyroelectric Property Accompanied by Spin Crossover in a Single Crystal of Fe(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202405514. [PMID: 38584585 DOI: 10.1002/anie.202405514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Pyroelectric materials hold significant potential for energy harvesting, sensing, and imaging applications. However, achieving high-performance pyroelectricity across a wide temperature range near room temperature remains a significant challenge. Herein, we demonstrate a single crystal of Fe(II) spin-crossover compound shows remarkable pyroelectric properties accompanied by a thermally controlled spin transition. In this material, the uniaxial alignment of polar molecules results in a polarization of the lattice. As the molecular geometry is modulated during a gradual spin transition, the polar axis experiences a colossal thermal expansion with a coefficient of 796×10-6 K-1. Consequently, the material's polarization undergoes significant modulation as a secondary pyroelectric effect. The considerable shift in polarization (pyroelectric coefficient, p=3.7-22 nC K-1cm-2), coupled with a low dielectric constant (ϵ'=4.4-5.4) over a remarkably wide temperature range of 298 to 400 K, suggests this material is a high-performance pyroelectric. The demonstration of pyroelectricity combined with magnetic switching in this study will inspire further investigations in the field of molecular electronics and magnetism.
Collapse
Affiliation(s)
- Chengdong Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yun Li
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zheng Tang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Kai-Ge Gao
- College of Physical Science and Technology Yangzhou, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liang-xiang Campus, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
12
|
Liu ZK, Sun K, Xue JP, Yao ZS, Tao J. Guest water-induced structural transformation and spin-crossover variation of a two-dimensional Hofmann-type compound. Dalton Trans 2024; 53:7522-7526. [PMID: 38597512 DOI: 10.1039/d4dt00435c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this paper, we report a two-dimensional (2D) Hofmann-type spin-crossover coordination polymer [FeII(o-NTrz)2PtII(CN)4]·H2O (o-NTrz = 4-(o-nitrobenzyl)imino-1,2,4-triazole). Due to the remarkable configurational flexibility of triazole-based ligand, the porous structure of this compound can be reversibly regulated by the loss of guest water molecules as a consequence of rotation of o-NTrz. The 180° reorientation of the o-nitrobenzyl moiety not only induces a response of gate-closing/opening of the porous framework but also significantly modulates the spin transition temperature. The present investigation highlights the potential of Hofmann-type SCO compounds with flexible ligands in exploring unusual physical and chemical phenomena.
Collapse
Affiliation(s)
- Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jin-Peng Xue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.
| |
Collapse
|
13
|
Popov I, Raenko D, Tchougréeff A, Besley E. Electronic Structure and d-d Spectrum of Metal-Organic Frameworks with Transition-Metal Ions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21749-21757. [PMID: 37969926 PMCID: PMC10641854 DOI: 10.1021/acs.jpcc.3c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
The electronic structure of metal-organic frameworks (MOFs) containing transition metal (TM) ions represents a significant and largely unresolved computational challenge due to limited solutions to the quantitative description of low-energy excitations in open d-shells. These excitations underpin the magnetic and sensing properties of TM MOFs, including the observed remarkable spin-crossover phenomenon. We introduce the effective Hamiltonian of crystal field approach to study the d-d spectrum of MOFs containing TM ions; this is a hybrid QM/QM method based on the separation of crystal structure into d- and s,p-subsystems treated at different levels of theory. We test the method on model frameworks, carbodiimides, and hydrocyanamides and a series of M-MOF-74 (M = Fe, Co, Ni) and compare the computational predictions to experimental data on magnetic properties and Mössbauer spectra.
Collapse
Affiliation(s)
- Ilya Popov
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Dmitrii Raenko
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| | - Andrei Tchougréeff
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow 119071, Russia
| | - Elena Besley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
14
|
Magott M, Płonka K, Sieklucka B, Dziedzic-Kocurek K, Kosaka W, Miyasaka H, Pinkowicz D. Guest-induced pore breathing controls the spin state in a cyanido-bridged framework. Chem Sci 2023; 14:9651-9663. [PMID: 37736640 PMCID: PMC10510767 DOI: 10.1039/d3sc03255h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Iron(ii) spin cross-over (SCO) compounds combine a thermally driven transition from the diamagnetic low-spin (LS) state to the paramagnetic high-spin (HS) state with a distinct change in the crystal lattice volume. Inversely, if the crystal lattice volume was modulated post-synthetically, the spin state of the compound could be tunable, resulting in the inverse effect for SCO. Herein, we demonstrate such a spin-state tuning in a breathing cyanido-bridged porous coordination polymer (PCP), where the volume change resulting from guest-induced gate-opening and -closing directly affects its spin state. We report the synthesis of a three-dimensional coordination framework {[FeII(4-CNpy)4]2[WIV(CN)8]·4H2O}n (1·4H2O; 4-CNpy = 4-cyanopyridine), which demonstrates a SCO phenomenon characterized by strong elastic frustration. This leads to a 48 K wide hysteresis loop above 140 K, but below this temperature results in a very gradual and incomplete SCO transition. 1·4H2O was activated under mild conditions, producing the nonporous {[FeII(4-CNpy)4]2[WIV(CN)8]}n (1) via a single-crystal-to-single-crystal process involving a 7.3% volume decrease, which shows complete and nonhysteretic SCO at T1/2 = 93 K. The low-temperature photoswitching behavior in 1 and 1·4H2O manifested the characteristic elasticity of the frameworks; 1 can be quantitatively converted into a metastable HS state after 638 nm light irradiation, while the photoactivation of 1·4H2O is only partial. Furthermore, nonporous 1 adsorbed CO2 molecules in a gated process, leading to {[FeII(4-CNpy)4]2[WIV(CN)8]·4CO2}n (1·4CO2), which resulted in a 15% volume increase and stabilization of the HS state in the whole temperature range down to 2 K. The demonstrated post-synthetic guest-exchange employing common gases is an efficient approach for tuning the spin state in breathing SCO-PCPs.
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Klaudia Płonka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski Institute of Physics, Jagiellonian University Stanisława Łojasiewicza 11 Kraków 30-348 Poland
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
15
|
Yan FF, Jiang WJ, Yao NT, Mao PD, Zhao L, Sun HY, Meng YS, Liu T. Manipulating fluorescence by photo-switched spin-state conversions in an iron(ii)-based SCO-MOF. Chem Sci 2023; 14:6936-6942. [PMID: 37389243 PMCID: PMC10306093 DOI: 10.1039/d3sc01217d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Manipulating fluorescence by photo-switched spin-state conversions is an attractive prospect for applications in smart magneto-optical materials and devices. The challenge is how to modulate the energy transfer paths of the singlet excited state by light-induced spin-state conversions. In this work, a spin crossover (SCO) FeII-based fluorophore was embedded into a metal-organic framework (MOF) to tune the energy transfer paths. Compound 1 {Fe(TPA-diPy)[Ag(CN)2]2}·2EtOH (1) has an interpenetrated Hofmann-type structure, wherein the FeII ion is coordinated by a bidentate fluorophore ligand (TPA-diPy) and four cyanide nitrogen atoms and acts as the fluorescent-SCO unit. Magnetic susceptibility measurements revealed that 1 underwent an incomplete and gradual spin crossover with T1/2 = 161 K. Photomagnetic studies confirmed photo-induced spin state conversions between the low-spin (LS) and high-spin (HS) states, where the irradiation of 532 and 808 nm laser lights converted the LS and HS states to the HS and LS states, respectively. Variable-temperature fluorescence spectra study revealed an anomalous decrease in emission intensity upon the HS → LS transition, confirming the synergetic coupling between the fluorophore and SCO units. Alternating irradiation of 532 and 808 nm laser lights resulted in reversible fluorescence intensity changes, confirming spin state-controlled fluorescence in the SCO-MOF. Photo-monitored structural analyses and UV-vis spectroscopic studies demonstrated that the photo-induced spin state conversions changed energy transfer paths from the TPA fluorophore to the metal-centered charge transfer bands, ultimately leading to the switching of fluorescence intensities. This work represents a new prototype compound showing bidirectional photo-switched fluorescence by manipulating the spin states of iron(ii).
Collapse
Affiliation(s)
- Fei-Fei Yan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Wen-Jing Jiang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Pan-Dong Mao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology 2 Linggong Road Dalian 116024 China
| |
Collapse
|
16
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
17
|
Dong YN, Liu ZK, Xue JP, Li Y, Sun K, Yao ZS, Tao J. Two-Dimensional Coordination Polymer Showing Spin-Crossover Behavior with a 64 K Wide Hysteresis Loop. Inorg Chem 2022; 61:20232-20236. [DOI: 10.1021/acs.inorgchem.2c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ya-Nan Dong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Zhi-Kun Liu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Jin-Peng Xue
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Yun Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Ke Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing102488, PR China
| |
Collapse
|