1
|
Di Genova G, Perrero J, Rosi M, Ceccarelli C, Rimola A, Balucani N. Hot Sulfur on the Rocks: The Reaction of Electronically Excited Sulfur Atoms with Water in an Ice-Surface Model. ACS EARTH & SPACE CHEMISTRY 2025; 9:844-855. [PMID: 40264811 PMCID: PMC12010427 DOI: 10.1021/acsearthspacechem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
In this contribution, we present a theoretical investigation of the reaction involving atomic sulfur in its first electronically excited state, 1D, and H2O on an ice-surface model. This study is motivated by the work of Giustini et al. (ACS Earth Space Chem., 2024, 8, 2318), which indicated a strong effect of the presence of four additional water molecules in the S(1D) + H2O reaction compared to the pure gas-phase case. Our simulation treats the long-range interactions (H-bonds and dispersion forces) with the ice water molecules in a much more realistic way being based on the use of a cluster of 18 water molecules, thus overcoming the limits of the small cluster used by Giustini et al. According to our results, S(1D) reacts via two possible reaction mechanisms: (1) addition to the O atom of a water molecule with the formation of H2OS or (2) insertion into one of the O-H bonds of a water molecule with the formation of HOSH. Both H2OS and HOSH are stabilized on ice by energy dissipation rather than isomerizing or dissociating into two products as seen in the gas-phase reaction. The interaction with surrounding water molecules affects the entire reaction pathway by stabilizing intermediate species, reducing some barriers, and impeding the only two-product open channel of the gas-phase reaction. S(1D) can be produced by UV-induced photodissociation of various precursor molecules on the surface of interstellar or cometary ice or by other high-energy processes induced by electrons or cosmic rays also in the ice bulk. Therefore, our results can be of help in elucidating the mysterious sulfur chemistry occurring in the icy mantles of interstellar grains or in cometary nuclei. Furthermore, this study demonstrates that the product branching ratios of gas-phase reactions should not be uncritically used in modeling interstellar ice chemistry.
Collapse
Affiliation(s)
- Gabriella Di Genova
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| | - Jessica Perrero
- Departament
de Quimica, Universitat Autònoma
de Barcelona, 08193 Catalonia, Spain
- Dipartimento
di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, 10125 Torino, Italy
| | - Marzio Rosi
- Dipartimento
di Ingegneria Civile e Ambientale, Università
degli Studi di Perugia, 06125 Perugia, Italy
| | - Cecilia Ceccarelli
- Univ.
Grenoble Alpes, CNRS, Institut de Planétologie
et d’Astrophysique de Grenoble (IPAG), 38100 Grenoble, France
| | - Albert Rimola
- Departament
de Quimica, Universitat Autònoma
de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università
degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Medvedkov IA, Nikolayev AA, He C, Yang Z, Mebel AM, Kaiser RI. One Collision-Two Substituents: Gas-Phase Preparation of Xylenes under Single-Collision Conditions. Angew Chem Int Ed Engl 2023:e202315147. [PMID: 38072833 DOI: 10.1002/anie.202315147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/21/2023]
Abstract
The fundamental reaction pathways to the simplest dialkylsubstituted aromatics-xylenes (C6 H4 (CH3 )2 )-in high-temperature combustion flames and in low-temperature extraterrestrial environments are still unknown, but critical to understand the chemistry and molecular mass growth processes in these extreme environments. Exploiting crossed molecular beam experiments augmented by state-of-the-art electronic structure and statistical calculations, this study uncovers a previously elusive, facile gas-phase synthesis of xylenes through an isomer-selective reaction of 1-propynyl (methylethynyl, CH3 CC) with 2-methyl-1,3-butadiene (isoprene, C5 H8 ). The reaction dynamics are driven by a barrierless addition of the radical to the diene moiety of 2-methyl-1,3-butadiene followed by extensive isomerization (hydrogen shifts, cyclization) prior to unimolecular decomposition accompanied by aromatization via atomic hydrogen loss. This overall exoergic reaction affords a preparation of xylenes not only in high-temperature environments such as in combustion flames and around circumstellar envelopes of carbon-rich Asymptotic Giant Branch (AGB) stars, but also in low-temperature cold molecular clouds (10 K) and in hydrocarbon-rich atmospheres of planets and their moons such as Triton and Titan. Our study established a hitherto unknown gas-phase route to xylenes and potentially more complex, disubstituted benzenes via a single collision event highlighting the significance of an alkyl-substituted ethynyl-mediated preparation of aromatic molecules in our Universe.
Collapse
Affiliation(s)
- Iakov A Medvedkov
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | | | - Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Mahjoub A, Altwegg K, Poston MJ, Rubin M, Hodyss R, Choukroun M, Ehlmann BL, Hänni N, Brown ME, Blacksberg J, Eiler JM, Hand KP. Complex organosulfur molecules on comet 67P: Evidence from the ROSINA measurements and insights from laboratory simulations. SCIENCE ADVANCES 2023; 9:eadh0394. [PMID: 37285429 DOI: 10.1126/sciadv.adh0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
The ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard the Rosetta mission revolutionized our understanding of cometary material composition. One of Rosetta's key findings is the complexity of the composition of comet 67P/Churyumov-Gerasimenko. Here, we used ROSINA data to analyze dust particles that were volatilized during a dust event in September 2016 and report the detection of large organosulfur species and an increase in the abundances of sulfurous species previously detected in the coma. Our data support the presence of complex sulfur-bearing organics on the surface of the comet. In addition, we conducted laboratory simulations that show that this material may have formed from chemical reactions that were initiated by the irradiation of mixed ices containing H2S. Our findings highlight the importance of sulfur chemistry in cometary and precometary materials and the possibility of characterizing organosulfur materials in other comets and small icy bodies using the James Webb Space Telescope.
Collapse
Affiliation(s)
- Ahmed Mahjoub
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Space Science Institute, 4765 Walnut St, Suite B, Boulder, CO 80301, USA
| | - Kathrin Altwegg
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | | | - Martin Rubin
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - Robert Hodyss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Mathieu Choukroun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Bethany L Ehlmann
- Division of Planetary and Space Sciences, Caltech, Pasadena, CA 91125, USA
| | - Nora Hänni
- Physikalisches Institut, University of Bern, Bern, Switzerland
| | - Michael E Brown
- Division of Planetary and Space Sciences, Caltech, Pasadena, CA 91125, USA
| | - Jordana Blacksberg
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - John M Eiler
- Division of Planetary and Space Sciences, Caltech, Pasadena, CA 91125, USA
| | - Kevin P Hand
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
4
|
Davis MC, Garrett NR, Fortenberry RC. F12+EOM Quartic Force Fields for Rovibrational Predictions of Electronically Excited States. J Phys Chem A 2023. [PMID: 37235692 DOI: 10.1021/acs.jpca.3c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quartic force fields (QFFs) constructed using a sum of ground-state CCSD(T)-F12b energies with EOM-CCSD excitation energies are proposed for computation of spectroscopic properties of electronically excited states. This is dubbed the F12+EOM approach and is shown to provide similar accuracy to previous methodologies at lower computational cost. Using explicitly correlated F12 approaches instead of canonical CCSD(T), as in the corresponding (T)+EOM approach, allows for 70-fold improvement in computational time. The mean percent difference between the two methods for anharmonic vibrational frequencies is only 0.10%. A similar approach is also developed herein which accounts for core correlation and scalar relativistic effects, named F12cCR+EOM. The F12+EOM and F12cCR+EOM approaches both match to within 2.5% mean absolute error of experimental fundamental frequencies. These new methods should help in clarifying astronomical spectra by assigning features to vibronic and vibrational transitions of small astromolecules when such data are not available experimentally.
Collapse
Affiliation(s)
- Megan C Davis
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Noah R Garrett
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|