1
|
Francioni V, Tang VD, Toloza EH, Brown NJ, Harnett MT. Vectorized instructive signals in cortical dendrites during a brain-computer interface task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.03.565534. [PMID: 37961227 PMCID: PMC10635122 DOI: 10.1101/2023.11.03.565534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vectorization of teaching signals is a key element of virtually all modern machine learning algorithms, including backpropagation, target propagation and reinforcement learning. Vectorization allows a scalable and computationally efficient solution to the credit assignment problem by tailoring instructive signals to individual neurons. Recent theoretical models have suggested that neural circuits could implement single-phase vectorized learning at the cellular level by processing feedforward and feedback information streams in separate dendritic compartments1-5. This presents a compelling, but untested, hypothesis for how cortical circuits could solve credit assignment in the brain. We leveraged a neurofeedback brain-computer interface (BCI) task with an experimenter-defined reward function to test for vectorized instructive signals in dendrites. We trained mice to modulate the activity of two spatially intermingled populations (4 or 5 neurons each) of layer 5 pyramidal neurons in the retrosplenial cortex to rotate a visual grating towards a target orientation while we recorded GCaMP activity from somas and corresponding distal apical dendrites. We observed that the relative magnitudes of somatic versus dendritic signals could be predicted using the activity of the surrounding network and contained information about task-related variables that could serve as instructive signals, including reward and error. The signs of these putative teaching signals both depended on the causal role of individual neurons in the task and predicted changes in overall activity over the course of learning. Furthermore, targeted optogenetic perturbation of these signals disrupted learning. These results provide the first biological evidence of a vectorized instructive signal in the brain, implemented via semi-independent computation in cortical dendrites, unveiling a potential mechanism for solving credit assignment in the brain.
Collapse
Affiliation(s)
- Valerio Francioni
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Vincent D. Tang
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Enrique H.S. Toloza
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Physics, MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Norma J. Brown
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Mark T. Harnett
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
2
|
Losey DM, Hennig JA, Oby ER, Golub MD, Sadtler PT, Quick KM, Ryu SI, Tyler-Kabara EC, Batista AP, Yu BM, Chase SM. Learning leaves a memory trace in motor cortex. Curr Biol 2024; 34:1519-1531.e4. [PMID: 38531360 PMCID: PMC11097210 DOI: 10.1016/j.cub.2024.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 12/06/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
How are we able to learn new behaviors without disrupting previously learned ones? To understand how the brain achieves this, we used a brain-computer interface (BCI) learning paradigm, which enables us to detect the presence of a memory of one behavior while performing another. We found that learning to use a new BCI map altered the neural activity that monkeys produced when they returned to using a familiar BCI map in a way that was specific to the learning experience. That is, learning left a "memory trace" in the primary motor cortex. This memory trace coexisted with proficient performance under the familiar map, primarily by altering neural activity in dimensions that did not impact behavior. Forming memory traces might be how the brain is able to provide for the joint learning of multiple behaviors without interference.
Collapse
Affiliation(s)
- Darby M Losey
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jay A Hennig
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emily R Oby
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D Golub
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick T Sadtler
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kristin M Quick
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Elizabeth C Tyler-Kabara
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurosurgery, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron P Batista
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Byron M Yu
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Steven M Chase
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Abstract
Brain-machine interfaces (BMIs) aim to treat sensorimotor neurological disorders by creating artificial motor and/or sensory pathways. Introducing artificial pathways creates new relationships between sensory input and motor output, which the brain must learn to gain dexterous control. This review highlights the role of learning in BMIs to restore movement and sensation, and discusses how BMI design may influence neural plasticity and performance. The close integration of plasticity in sensory and motor function influences the design of both artificial pathways and will be an essential consideration for bidirectional devices that restore both sensory and motor function.
Collapse
Affiliation(s)
- Maria C Dadarlat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Ryan A Canfield
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Amy L Orsborn
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Jeon BB, Fuchs T, Chase SM, Kuhlman SJ. Visual experience has opposing influences on the quality of stimulus representation in adult primary visual cortex. eLife 2022; 11:80361. [PMID: 36321876 PMCID: PMC9629826 DOI: 10.7554/elife.80361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Transient dark exposure, typically 7–10 days in duration, followed by light reintroduction is an emerging treatment for improving the restoration of vision in amblyopic subjects whose occlusion is removed in adulthood. Dark exposure initiates homeostatic mechanisms that together with light-induced changes in cellular signaling pathways result in the re-engagement of juvenile-like plasticity in the adult such that previously deprived inputs can gain cortical territory. It is possible that dark exposure itself degrades visual responses, and this could place constraints on the optimal duration of dark exposure treatment. To determine whether eight days of dark exposure has a lasting negative impact on responses to classic grating stimuli, neural activity was recorded before and after dark exposure in awake head-fixed mice using two-photon calcium imaging. Neural discriminability, assessed using classifiers, was transiently reduced following dark exposure; a decrease in response reliability across a broad range of spatial frequencies likely contributed to the disruption. Both discriminability and reliability recovered. Fixed classifiers were used to demonstrate that stimulus representation rebounded to the original, pre-deprivation state, thus dark exposure did not appear to have a lasting negative impact on visual processing. Unexpectedly, we found that dark exposure significantly stabilized orientation preference and signal correlation. Our results reveal that natural vision exerts a disrupting influence on the stability of stimulus preference for classic grating stimuli and, at the same time, improves neural discriminability for both low and high-spatial frequency stimuli.
Collapse
Affiliation(s)
- Brian B Jeon
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States
| | - Thomas Fuchs
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| | - Steven M Chase
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States
| | - Sandra J Kuhlman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, United States
| |
Collapse
|