1
|
Zhang Z, Lin C, Li J. Utilization of Three-Dimensional Electron Diffraction for Structure Determination of Extra-Large-Pore Zeolites. SMALL METHODS 2025; 9:e2401461. [PMID: 39604326 DOI: 10.1002/smtd.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The development of extra-large-pore (ELP) zeolites is crucial for industries of petrochemical catalysis, notably in processes like diesel cracking and hydrocracking of multi-carbon hydrocarbon substrates. The catalytic performance and selectivity of these zeolites depend heavily on their specific porous structures, making precise structure determination highly essential for understanding their properties and functionalities. However, the complex structures of ELP zeolites pose significant challenges for characterization. Three-dimensional electron diffraction (3DED) has emerged as a leading technique for studying zeolites as it does not require large crystals or pure samples. This review provides an overview of the development and application of 3DED for elucidating ELP zeolite structures. It begins with a summary of zeolites and their structural determination methods, followed by a detailed discussion of the principles and benefits of 3DED, the ELP zeolites discovered to date, and the specific applications and findings by 3DED. Additionally, the review anticipates that combining 3DED with other advanced techniques will enhance the understanding of ELP zeolites, including aspects like heteroatom doping, host-guest interactions, framework flexibility, and detailed structural characterization. This integration is expected to lead to innovations in the development and application of ELP zeolites.
Collapse
Affiliation(s)
- Zhenghan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong Lin
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Jian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Li X, Zhao T, Wang F, Wu W, Sun Y, Ren H, Sun F. Isoreticular 3D covalent organic frameworks with non-interpenetrated pcu-derived dia topology: pore regulation from micropores to mesopores. Chem Sci 2025; 16:7339-7346. [PMID: 40144510 PMCID: PMC11935523 DOI: 10.1039/d5sc01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Three-dimensional (3D) covalent organic frameworks (COFs) offer tremendous potential for a range of applications due to their unique structural and porous features. However, achieving the reticular synthesis of 3D COFs with regulated pores through isoreticular expansion remains a significant challenge, primarily due to the occurrence of interpenetration. In this study, we present a novel strategy that utilizes high-coordinated building blocks, acting as a binodal group of tetrahedral nodes, to synthesize isoreticular 3D COFs (JUC-300 to -302) with tunable pore sizes and uncommon non-interpenetrated pcu-derived dia topology. The pore sizes of these COFs were successfully tuned from 1.6 to 5.2 nm. The mesopores with a size of 5.2 nm in JUC-302 are the largest reported among 3D COFs to date and demonstrated the effective incorporation of a large protein, myoglobin. The strategy provides a new pathway for synthesizing isoreticular 3D COFs with reduced interpenetration, enabling applications that depend on various pore sizes.
Collapse
Affiliation(s)
- Xilin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| | - Tongyi Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| | - Fengzhen Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| | - Wenxuan Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| | - Yali Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| | - Hao Ren
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University Changchun China
| |
Collapse
|
3
|
Lv M, Wu X, Wang W, Han D, Chen S, Hu Y, Zhang Q, Wang Q, Wei R. Single-Molecule Detection via Pore Nanoconfinement of Covalent Organic Frameworks for Surface-Enhanced Raman Scattering. ACS Sens 2025; 10:1778-1787. [PMID: 40079413 DOI: 10.1021/acssensors.4c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Surface-enhanced Raman scattering (SERS) offers significant advantages for single-molecule detection. However, stochastic molecular motion makes it challenging to consistently capture signals from single-molecule binding events, particularly in complex environments. Herein, we propose a novel SERS system via the pore nanoconfinement effect of covalent organic frameworks (COFs) to achieve reliable single-molecule detection. The self-assembled COF thin films on SERS metal substrates (Au/Ag) create a nanogap of 3 nm, allowing electric field enhancement. By precise tuning of the COF shell thickness, a molecular-scale pore volume is formed, effectively trapping individual molecules from molecular aggregates. Furthermore, the strong intermolecular forces within the COF pores significantly enhance the residence time of individual molecules, thereby increasing the probability of detecting single-molecule binding events. This innovative approach ensures consistent and reliable SERS single-molecule detection in complex mixtures, paving the way for advanced applications in biochemical sensing and diagnostics.
Collapse
Affiliation(s)
- Mengya Lv
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiao Wu
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Wen Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Sheng Chen
- College of Chemistry, Zhengzhou University, Science Avenue 100, Zhengzhou 450001, China
| | - Yifan Hu
- Zhengzhou V3 Biotechnology Co., Ltd., Zhengzhou 450047, Henan, China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, Henan, China
| | - Qiyan Wang
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ronghan Wei
- College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
4
|
Shi X, Li H, Chen T, Ren J, Zhao W, Patra BC, Kang C, Zhang Z, Zhao D. Precise Separation of Complex Ultrafine Molecules through Solvating Two-Dimensional Covalent Organic Framework Membranes. Angew Chem Int Ed Engl 2025; 64:e202421661. [PMID: 39623892 DOI: 10.1002/anie.202421661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
Isoporous nanomaterials, with their proven potential for accurate molecular sieving, are of substantial interest in propelling sustainable membrane techniques. Covalent organic frameworks (COFs) are prominent due to their customizable isopores and chemistry. Still, the discrepancy in experimental and theoretical structures poses a challenge to developing COF membranes for molecular separations. Here, we report high-selectivity sieving of complex ultrafine molecules through solvating pore-to-pore-aligned two-dimensional COF membranes. Our structurally oriented membrane shows reversible interlayer expansion with intralayer shift in response to solvent exposure. This dynamic deformation induced by solvents leads to a reduction in the aperture of the membrane's sieving pores, which correlates with the number of COF layers. The resultant membranes yield largely improved molecular selectivity to discriminate binary and trinary complex mixtures, exceeding the conventional COF membranes. The membrane's robustness against solvents and physical aging permits extremely stable microporosity and reliable operation for over 3000 h. This exceptional performance positions our membrane as an alternative to enriching and purifying value-added chemicals, such as active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Xiansong Shi
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Ting Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Junyu Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Bidhan Chandra Patra
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Chengjun Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Zhaoqiang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, 117585, Singapore
| |
Collapse
|
5
|
Zhang X, Hu J, Liu H, Sun T, Wang Z, Zhao Y, Zhang YB, Huai P, Ma Y, Jiang S. Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence. J Am Chem Soc 2025; 147:1709-1720. [PMID: 39621315 PMCID: PMC11744758 DOI: 10.1021/jacs.4c12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
The structural characterization of new materials often poses immense challenges, especially when obtaining single-crystal structures is difficult, which is a common difficulty with covalent organic frameworks (COFs). Despite this, understanding the atomic structure is crucial as it provides insights into the arrangement and connectivity of organic building blocks, offering the opportunity to establish the correlation of structure-function relationships and unravel material properties. In this study, we present an approach for determining the structures of COFs, an integration of electron crystallography and computational intelligence (COF+). By applying established chemistry knowledge and employing particle swarm optimization (PSO) for trial structure generation, we overcome existing limitations, thus paving the way for advancements in COF structural determination. We have successfully implemented this technique on four representative COFs, each with unique characteristics. These examples underline the accuracy and efficacy of our approach in addressing the challenges tied to COF structural determination. Furthermore, our approach has revealed new structure candidates with different topologies or interpenetrations that are chemically feasible. This discovery demonstrates the capability of our algorithm in constructing trial COF structures without being influenced by topological factors. Our new approach to COF structure determination represents a significant advancement in the field and opens new avenues for exploring the properties and applications of COF materials.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Junyi Hu
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Huiyu Liu
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Tu Sun
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Zidi Wang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Yingbo Zhao
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Ping Huai
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| | - Yanhang Ma
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Shan Jiang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
6
|
Xin J, Qiao X, Qiu Y, Li J, Yang S, Li G, Sun J. Locating gas molecules in MOFs by cryo-3D electron diffraction. Sci Bull (Beijing) 2024; 69:3496-3500. [PMID: 39294079 DOI: 10.1016/j.scib.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Affiliation(s)
- Junjie Xin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianji Qiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yi Qiu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiangnan Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guobao Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Husanu E, Agbemeh VE, Andrusenko I, Marchetti D, Sonaglioni D, Gemmi M. Polymorphism in oxyresveratrol studied by 3D ED. ACS OMEGA 2024; 9:41555-41564. [PMID: 39398150 PMCID: PMC11465280 DOI: 10.1021/acsomega.4c05292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
The polymorphism of oxyresveratrol, a natural extract widely used in traditional Asian medicine, was investigated by means of the most recent structure characterization techniques. A previously unknown anhydrate oxyresveratrol crystal structure was identified for the first time from a submicrometric polyphasic mixture using 3D electron diffraction (3D ED). Additionally, a new polymorph of the dihydrate form of oxyresveratrol was also discovered and structurally studied. Detailed thermal and calorimetry studies revealed their thermal behavior and dehydration path. DFT calculations were also employed to investigate the stability of the rotational conformers involved in the hydrated phases (in both new and already known phases). This research exemplifies how 3D ED combined with cryo-plunging and routine solid-state analysis can elucidate the polymorphism scenario of a nanocrystalline natural compound.
Collapse
Affiliation(s)
- Elena Husanu
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Vincentia Emerson Agbemeh
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Iryna Andrusenko
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Danilo Marchetti
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Daniele Sonaglioni
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Dipartimento
di Fisica “E. Fermi”, University
of Pisa, Largo B. Pontecorvo
3, Pisa 56127, Italy
| | - Mauro Gemmi
- Electron
Crystallography, Center for Material Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
8
|
Wayment LJ, Teat SJ, Huang S, Chen H, Zhang W. Dynamic Entwined Topology in Helical Covalent Polymers Dictated by Competing Supramolecular Interactions. Angew Chem Int Ed Engl 2024; 63:e202403599. [PMID: 38444217 DOI: 10.1002/anie.202403599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non-covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub-angstrom differences in the counter-ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal-coordination HCP (m-HCP) motif. Single-crystal X-ray diffraction (SCXRD) analysis of HCP-Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m-HCP structure was demonstrated by the successful synthesis of HCP-K. Finally, ion-exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter-ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| |
Collapse
|
9
|
Huang X, Li Y, Fu S, Ma C, Lu Y, Wang M, Zhang P, Li Z, He F, Huang C, Liao Z, Zou Y, Zhou S, Helm M, Petkov PS, Wang HI, Bonn M, Li J, Xu W, Dong R, Feng X. Control of the Hydroquinone/Benzoquinone Redox State in High-Mobility Semiconducting Conjugated Coordination Polymers. Angew Chem Int Ed Engl 2024; 63:e202320091. [PMID: 38488855 DOI: 10.1002/anie.202320091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 04/11/2024]
Abstract
Conjugated coordination polymers (c-CPs) are unique organic-inorganic hybrid semiconductors with intrinsically high electrical conductivity and excellent charge carrier mobility. However, it remains a challenge in tailoring electronic structures, due to the lack of clear guidelines. Here, we develop a strategy wherein controlling the redox state of hydroquinone/benzoquinone (HQ/BQ) ligands allows for the modulation of the electronic structure of c-CPs while maintaining the structural topology. The redox-state control is achieved by reacting the ligand TTHQ (TTHQ=1,2,4,5-tetrathiolhydroquinone) with silver acetate and silver nitrate, yielding Ag4TTHQ and Ag4TTBQ (TTBQ=1,2,4,5-tetrathiolbenzoquinone), respectively. In spite of sharing the same topology consisting of a two-dimensional Ag-S network and HQ/BQ layer, they exhibit different band gaps (1.5 eV for Ag4TTHQ and 0.5 eV for Ag4TTBQ) and conductivities (0.4 S/cm for Ag4TTHQ and 10 S/cm for Ag4TTBQ). DFT calculations reveal that these differences arise from the ligand oxidation state inhibiting energy band formation near the Fermi level in Ag4TTHQ. Consequently, Ag4TTHQ displays a high Seebeck coefficient of 330 μV/K and a power factor of 10 μW/m ⋅ K2, surpassing Ag4TTBQ and the other reported silver-based c-CPs. Furthermore, terahertz spectroscopy demonstrates high charge mobilities exceeding 130 cm2/V ⋅ s in both Ag4TTHQ and Ag4TTBQ.
Collapse
Affiliation(s)
- Xing Huang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| | - Yang Li
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Shuai Fu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Chao Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yang Lu
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Peng Zhang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Ze Li
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Feng He
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Chuanhui Huang
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, 01109, Germany
| | - Ye Zou
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Shengqiang Zhou
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01328, Germany
| | - Manfred Helm
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 01328, Germany
| | - Petko St Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, 1164, Bulgaria
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584, CC Utrecht, The Netherlands
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, 55128, Germany
| | - Jian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Xu
- Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| | - Renhao Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale), 06120, Germany
| |
Collapse
|
10
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
12
|
Liu X, Wang Z, Zhang Y, Yang N, Gui B, Sun J, Wang C. Gas-Triggered Gate-Opening in a Flexible Three-Dimensional Covalent Organic Framework. J Am Chem Soc 2024. [PMID: 38615324 DOI: 10.1021/jacs.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The development of novel soft porous crystals (SPCs) that can be transformed from nonporous to porous crystals is significant because of their promising applications in gas storage and separation. Herein, we systematically investigated for the first time the gas-triggered gate-opening behavior of three-dimensional covalent organic frameworks (3D COFs) with flexible building blocks. FCOF-5, a 3D COF containing C-O single bonds in the backbone, exhibits a unique "S-shaped" isotherm for various gases, such as CO2, C2, and C3 hydrocarbons. According to in situ characterization, FCOF-5 undergoes a pressure-induced closed-to-open structural transition due to the rotation of flexible C-O single bonds in the framework. Furthermore, the gated hysteretic sorption property of FCOF-5 can enable its use as an absorbent for the efficient removal of C3H4 from C3H4/C3H6 mixtures. Therefore, 3D COFs synthesized from flexible building blocks represent a new type of SPC with gate-opening characteristics. This study will strongly inspire us to design other 3D COF-based SPCs for interesting applications in the future.
Collapse
Affiliation(s)
- Xiaoling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhifang Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ya Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Na Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
13
|
Gao ZR, Yu H, Chen FJ, Mayoral A, Niu Z, Niu Z, Li X, Deng H, Márquez-Álvarez C, He H, Xu S, Zhou Y, Xu J, Xu H, Fan W, Balestra SRG, Ma C, Hao J, Li J, Wu P, Yu J, Camblor MA. Interchain-expanded extra-large-pore zeolites. Nature 2024; 628:99-103. [PMID: 38538794 DOI: 10.1038/s41586-024-07194-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/12/2024] [Indexed: 04/01/2024]
Abstract
Stable aluminosilicate zeolites with extra-large pores that are open through rings of more than 12 tetrahedra could be used to process molecules larger than those currently manageable in zeolite materials. However, until very recently1-3, they proved elusive. In analogy to the interlayer expansion of layered zeolite precursors4,5, we report a strategy that yields thermally and hydrothermally stable silicates by expansion of a one-dimensional silicate chain with an intercalated silylating agent that separates and connects the chains. As a result, zeolites with extra-large pores delimited by 20, 16 and 16 Si tetrahedra along the three crystallographic directions are obtained. The as-made interchain-expanded zeolite contains dangling Si-CH3 groups that, by calcination, connect to each other, resulting in a true, fully connected (except possible defects) three-dimensional zeolite framework with a very low density. Additionally, it features triple four-ring units not seen before in any type of zeolite. The silicate expansion-condensation approach we report may be amenable to further extra-large-pore zeolite formation. Ti can be introduced in this zeolite, leading to a catalyst that is active in liquid-phase alkene oxidations involving bulky molecules, which shows promise in the industrially relevant clean production of propylene oxide using cumene hydroperoxide as an oxidant.
Collapse
Affiliation(s)
- Zihao Rei Gao
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Huajian Yu
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Fei-Jian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, China
| | - Alvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Zijian Niu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, China
| | - Ziwen Niu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xintong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hua Deng
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | | | - Hong He
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shutao Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yida Zhou
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Wei Fan
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Salvador R G Balestra
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Chao Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Jiazheng Hao
- Spallation Neutron Source Science Center, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, China.
| | - Miguel A Camblor
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.
| |
Collapse
|
14
|
Lin C, Li J, Yin ZW, Huang W, Zhao Q, Weng Q, Liu Q, Sun J, Chen G, Pan F. Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307404. [PMID: 37870392 DOI: 10.1002/adma.202307404] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Indexed: 10/24/2023]
Abstract
The rapid development of modern consumer electronics is placing higher demands on the lithium cobalt oxide (LiCoO2 ; LCO) cathode that powers them. Increasing operating voltage is exclusively effective in boosting LCO capacity and energy density but is inhibited by the innate high-voltage instability of the LCO structure that serves as the foundation and determinant of its electrochemical behavior in lithium-ion batteries. This has stimulated extensive research on LCO structural stabilization. Here, it is focused on the fundamental structural understanding of LCO cathode from long-term studies. Multi-scale structures concerning LCO bulk and surface and various structural issues along with their origins and corresponding stabilization strategies with specific mechanisms are uncovered and elucidated at length, which will certainly deepen and advance the knowledge of LCO structure and further its inherent relationship with electrochemical performance. Based on these understandings, remaining questions and opportunities for future stabilization of the LCO structure are also emphasized.
Collapse
Affiliation(s)
- Cong Lin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
- College of Chemistry and Chemical Engineering, Peking University, Beijing, 100871, China
| | - Jianyuan Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- College of Chemistry and Chemical Engineering, Peking University, Beijing, 100871, China
| | - Zu-Wei Yin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Weiyuan Huang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qinghe Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qingsong Weng
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Qiang Liu
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Junliang Sun
- College of Chemistry and Chemical Engineering, Peking University, Beijing, 100871, China
| | - Guohua Chen
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, China
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
15
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
16
|
Yu B, Li W, Wang X, Li JH, Lin RB, Wang H, Ding X, Jin Y, Yang X, Wu H, Zhou W, Zhang J, Jiang J. Observation of Interpenetrated Topology Isomerism for Covalent Organic Frameworks with Atom-Resolution Single Crystal Structures. J Am Chem Soc 2023; 145:25332-25340. [PMID: 37944150 DOI: 10.1021/jacs.3c09001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
17
|
Xu Y, Sun T, Zeng T, Zhang X, Yao X, Liu S, Shi Z, Wen W, Zhao Y, Jiang S, Ma Y, Zhang YB. Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework. Nat Commun 2023; 14:4215. [PMID: 37452038 PMCID: PMC10349083 DOI: 10.1038/s41467-023-39998-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
The enolimine-ketoenamine tautomerism has been utilised to construct 2D covalent organic frameworks (COFs) with a higher level of chemical robustness and superior photoelectronic activity. However, it remains challenging to fully control the tautomeric states and correlate their tautomeric structure-photoelectronic properties due to the mobile equilibrium of proton transfer between two other atoms. We show that symmetry-asymmetry tautomerisation from diiminol to iminol/cis-ketoenamine can be stabilised and switched in a crystalline, porous, and dynamic 3D COF (dynaCOF-301) through concerted structural transformation and host-guest interactions upon removal and adaptive inclusion of various guest molecules. Specifically, the tautomeric dynaCOF-301 is constructed by linking the hydroquinone with a tetrahedral building block through imine linkages to form 7-fold interwoven diamondoid networks with 1D channels. Reversible framework deformation and ordering-disordering transition are determined from solvated to activated and hydrated phases, accompanied by solvatochromic and hydrochromic effects useful for rapid, steady, and visual naked-eye chemosensing.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tu Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiangyu Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaolin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academic of Sciences, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
18
|
Zhou G, Yang T, Huang Z. Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction. Commun Chem 2023; 6:116. [PMID: 37286771 DOI: 10.1038/s42004-023-00915-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Covalent organic frameworks (COFs) have been attracting intense research due to their permanent porosity, designable architecture, and high stability. However, COFs are challenging to crystallize and their synthesis often results in tiny crystal sizes and low crystallinities, which hinders an unambiguous structure determination. Herein, we demonstrate that the structure of low-crystallinity COF Py-1P nanocrystals can be solved by coupling three-dimensional electron diffraction (3DED) with simulated annealing (SA). The resulting model is comparable to that obtained from high-crystallinity samples by dual-space method. Moreover, for low-resolution 3DED data, the model obtained by SA shows a better framework than those provided by classic direct method, dual-space method, and charge flipping. We further simulate data with different resolutions to understand the reliability of SA under different crystal quality conditions. The successful determination of Py-1P structure by SA compared to other methods provides new knowledge for using 3DED to analyze low-crystallinity and nanosized materials.
Collapse
Affiliation(s)
- Guojun Zhou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
19
|
Pan G, Hou X, Liu Z, Yang C, Long J, Huang G, Bi J, Yu Y, Li L. The Hydration-Initiated Pathway of Water Oxidation over Photoexcited Covalent Organic Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Guodong Pan
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Xuesen Hou
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Zheyuan Liu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Chengkai Yang
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jinhong Bi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Department of Environmental Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|