1
|
Réant BL, Seed JA, Whitehead GFS, Goodwin CAP. Uranium(III) and Uranium(IV) meta-Terphenylthiolate Complexes. Inorg Chem 2025; 64:3161-3177. [PMID: 39919254 PMCID: PMC11863384 DOI: 10.1021/acs.inorgchem.4c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
We report the synthesis and characterization of crystalline m-terphenylthiolate uranium complexes supported by the bulky ligand system, SAriPr6 (SAriPr6 = {SC6H3-2,6-(Tripp)2}; Tripp = 2,4,6-iPr-C6H2). Treatment of UIVCl4 with 2 equiv of KSAriPr6 in Et2O afforded both [UIV(SAriPr6)2(Cl)2] (1) and the Et2O adduct, [UIV(SAriPr6)2(Cl)2(Et2O)2] (1·Et2O) in poor yield. The reaction between [UIV(BH4)4] and 1 equiv of KSAriPr6 in toluene gave several crystals of the double salt, [UIV(μ-SAriPr6)(BH4)2(μ-BH4)(μ3-BH4)K]2 (2), and exposing the crude reaction mixture to Et2O gave the disulfide dimer, (SAriPr6)2. The reaction between [UIV(BH4)4] and 1 equiv of HSAriPr6 in hot toluene gave [UIII(H3B·SAriPr6 κS,H,H)(BH4)2] (3) which proved resistant to further substitution using either HSAriPr6 or KSAriPr6. Two U(III) mono-terphenylthiolates, [UIII(SAriPr6)(BH4)2] (4a) and [{UIII(SAriPr6)(BH4)}2{μ-B2H6}] (4b), were isolated as a mixture from the reaction between [UIII(BH3)3(toluene)] and 1 equiv of KSAriPr6, while using 2 equiv of KSAriPr6 gave the bis-terphenylthiolate complex [UIII(SAriPr6)2(BH4)] (5). Complex 4b is a rare example of a nido-metalloborane. Complexes 1-5 have been characterized variously by single-crystal and powder X-ray diffraction, multinuclear NMR spectroscopy, infrared spectroscopy, UV-Vis-NIR spectroscopy, SQUID magnetometry, and elemental analyses as appropriate. Quantum chemical calculations have been employed to interpret the nature of the U-S bonding interactions across these complexes.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - John A. Seed
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Conrad A. P. Goodwin
- Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Patyk-Kaźmierczak E, Izquierdo-Ruiz F, Lobato A, Kaźmierczak M, Moszczyńska I, Olejniczak A, Recio JM. The curious case of proton migration under pressure in the malonic acid and 4,4'-bipyridine cocrystal. IUCRJ 2024; 11:168-181. [PMID: 38275161 PMCID: PMC10916288 DOI: 10.1107/s2052252524000344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
In the search for new active pharmaceutical ingredients, the precise control of the chemistry of cocrystals becomes essential. One crucial step within this chemistry is proton migration between cocrystal coformers to form a salt, usually anticipated by the empirical ΔpKa rule. Due to the effective role it plays in modifying intermolecular distances and interactions, pressure adds a new dimension to the ΔpKa rule. Still, this variable has been scarcely applied to induce proton-transfer reactions within these systems. In our study, high-pressure X-ray diffraction and Raman spectroscopy experiments, supported by DFT calculations, reveal modifications to the protonation states of the 4,4'-bipyridine (BIPY) and malonic acid (MA) cocrystal (BIPYMA) that allow the conversion of the cocrystal phase into ionic salt polymorphs. On compression, neutral BIPYMA and monoprotonated (BIPYH+MA-) species coexist up to 3.1 GPa, where a phase transition to a structure of P21/c symmetry occurs, induced by a double proton-transfer reaction forming BIPYH22+MA2-. The low-pressure C2/c phase is recovered at 2.4 GPa on decompression, leading to a 0.7 GPa hysteresis pressure range. This is one of a few studies on proton transfer in multicomponent crystals that shows how susceptible the interconversion between differently charged species is to even slight pressure changes, and how the proton transfer can be a triggering factor leading to changes in the crystal symmetry. These new data, coupled with information from previous reports on proton-transfer reactions between coformers, extend the applicability of the ΔpKa rule incorporating the pressure required to induce salt formation.
Collapse
Affiliation(s)
- Ewa Patyk-Kaźmierczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Fernando Izquierdo-Ruiz
- MALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain
| | - Alvaro Lobato
- MALTA-Consolider Team and Departamento de Química Física, University Complutense of Madrid, Avda. de Séneca, 2 Ciudad Universitaria, Madrid 28040, Spain
| | - Michał Kaźmierczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Ida Moszczyńska
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Anna Olejniczak
- Facuty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - J. Manuel Recio
- MALTA-Consolider Team and Departamento de Química Física y Analítica, University of Oviedo, Julián Clavería n° 8, Oviedo 33006, Spain
| |
Collapse
|
3
|
Brackbill IJ, Rajeshkumar T, Maron L, Bergman RG, Arnold J. Spectroscopic and Computational Evidence of Uranium Dihydrogen Complexes. J Am Chem Soc 2024; 146:1257-1261. [PMID: 38189272 DOI: 10.1021/jacs.3c12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dihydrogen complexation, a phenomenon with robust precedent in the transition metal series, is spectroscopically detected for a uranium(III) complex and thereby extended for the first time to the 5f series. The vacant coordination site and low valence of (C5H4SiMe3)3U prove to be key to the reversible formation of (C5H4SiMe3)3U-H2 (complex 1), and the paramagnetism of the f3 center facilitates the detection of complex 1 by NMR spectroscopy. Density functional theory calculations reveal that the delocalization of the 5f electron density from (C5H4SiMe3)3U onto the side-on dihydrogen ligand is crucial to complex formation, an unusual bonding situation for an actinide acid-base complex. The spectroscopic and computational results are compared to those reported for lanthanide metallocenes to yield insight into the nature of─and future possibilities for─f-element dihydrogen complexation.
Collapse
Affiliation(s)
- I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| | - Thayalan Rajeshkumar
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-1460, United States
| |
Collapse
|
4
|
Beck N, Gomez Martinez D, Albrecht-Schönzart TE. Pressure-Induced Coordination Number Transition in Lanthanide Mellitate Coordination Polymers: Structure and Spectroscopy. Inorg Chem 2023; 62:15375-15381. [PMID: 37700461 DOI: 10.1021/acs.inorgchem.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
High external pressure is found to induce a non-coordinated water molecule to bond to cerium in a previously studied mellitate coordination polymer, as determined by high-pressure single-crystal X-ray diffraction, resulting in a coordination number transition at 3.85 GPa from 9 to 9.5 where half the cerium ions are 10-coordinate. Also, bond length changes due to increased pressure are experimentally measured, whereas the cerium-carboxylate bond lengths overall change by -0.004(9) Å/GPa, the cerium-water bonds by -0.016(3) Å/GPa, and cerium-oxygen bonds overall by -0.010(6) Å/GPa, which corresponds well with theoretical bond length decreases determined for similar compounds. The high-pressure absorbance spectra of the analogous neodymium mellitate are examined and compared with the structural changes observed.
Collapse
Affiliation(s)
- Nicholas Beck
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Daniela Gomez Martinez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Nuclear Science and Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
5
|
Brown AC, Suess DLM. An Iron-Sulfur Cluster with a Highly Pyramidalized Three-Coordinate Iron Center and a Negligible Affinity for Dinitrogen. J Am Chem Soc 2023; 145:20088-20096. [PMID: 37656961 PMCID: PMC10824254 DOI: 10.1021/jacs.3c07677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Attempts to generate open coordination sites for N2 binding at synthetic Fe-S clusters often instead result in cluster oligomerization. Recently, it was shown for Mo-Fe-S clusters that such oligomerization reactions can be prevented through the use of sterically protective supporting ligands, thereby enabling N2 complex formation. Here, this strategy is extended to Fe-only Fe-S clusters. One-electron reduction of (IMes)3Fe4S4Cl (IMes = 1,3-dimesitylimidazol-2-ylidene) forms the transiently stable edge-bridged double cubane (IMes)6Fe8S8, which loses two IMes ligands to form the face-bridged double-cubane, (IMes)4Fe8S8. The finding that the three supporting IMes ligands do not confer sufficient protection to curtail cluster oligomerization prompted the design of a new N-heterocyclic carbene, SIArMe,iPr (1,3-bis(3,5-diisopropyl-2,6-dimethylphenyl)-2-imidazolidinylidene; abbreviated as SIAr), that features bulky groups strategically placed in remote positions. When the reduction of (SIAr)3Fe4S4Cl or [(SIAr)3Fe4S4(THF)]+ is conducted in the presence of SIAr, the formation of (SIAr)4Fe8S8 is indeed suppressed, permitting characterization of the reduced [Fe4S4]0 product. Surprisingly, rather than being an N2 complex, the product is simply (SIAr)3Fe4S4: a cluster with a three-coordinate Fe site that adopts an unusually pyramidalized geometry. Although (SIAr)3Fe4S4 does not coordinate N2 to any appreciable extent under the surveyed conditions, it does bind CO to form (SIAr)3Fe4S4(CO). This finding demonstates that the binding pocket at the unique Fe is not too small for N2; instead, the exceptionally weak affinity for N2 can be attributed to weak Fe-N2 bonding. The differences in the N2 coordination chemistry between sterically protected Mo-Fe-S clusters and Fe-only Fe-S clusters are discussed.
Collapse
Affiliation(s)
- Alexandra C Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Covalent bond shortening and distortion induced by pressurization of thorium, uranium, and neptunium tetrakis aryloxides. Nat Commun 2022; 13:5923. [PMID: 36207297 PMCID: PMC9546877 DOI: 10.1038/s41467-022-33459-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Covalency involving the 5f orbitals is regularly invoked to explain the reactivity, structure and spectroscopic properties of the actinides, but the ionic versus covalent nature of metal-ligand bonding in actinide complexes remains controversial. The tetrakis 2,6-di-tert-butylphenoxide complexes of Th, U and Np form an isostructural series of crystal structures containing approximately tetrahedral MO4 cores. We show that up to 3 GPa the Th and U crystal structures show negative linear compressibility as the OMO angles distort. At 3 GPa the angles snap back to their original values, reverting to a tetrahedral geometry with an abrupt shortening of the M-O distances by up to 0.1 Å. The Np complex shows similar but smaller effects, transforming above 2.4 GPa. Electronic structure calculations associate the M-O bond shortening with a change in covalency resulting from increased contributions to the M-O bonding by the metal 6d and 5f orbitals, the combination promoting MO4 flexibility at little cost in energy.
Collapse
|