1
|
Centanino V, Fortunato G, Bueti D. The neural link between stimulus duration and spatial location in the human visual hierarchy. Nat Commun 2024; 15:10720. [PMID: 39730326 PMCID: PMC11681071 DOI: 10.1038/s41467-024-54336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024] Open
Abstract
Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location. Our results show a transition in duration coding: from monotonic and spatially-dependent in early visual cortex to unimodal and spatially-invariant in frontal cortex. Along the dorsal visual stream, particularly in the intraparietal sulcus (IPS), neuronal populations show common selective responses to both spatial and temporal information. In the IPS, spatial and temporal topographic organizations are also linked, although duration maps are smaller, less clustered, and more variable across participants. These findings help identify the mechanisms underlying human perception of visual duration and characterize the functional link between time and space processing, highlighting the importance of their interactions in shaping brain responses.
Collapse
Affiliation(s)
| | | | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
2
|
Teghil A. Interoceptive and Bodily Processing in Prospective and Retrospective Timing. Curr Top Behav Neurosci 2024. [PMID: 39436628 DOI: 10.1007/7854_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
This chapter reviews some directions along which Craig's proposal of subjective time as emergent from interoceptive and bodily dynamics allows to frame recent findings on prospective and retrospective time processing. Behavioral and neuroimaging evidence from prospective timing studies demonstrates that an interoceptive-insular system may support the development of a primary representation of time in the context of large-scale networks involved in duration processing. Studies showing a tight link between episodic memory and interoceptive, emotional, and sensorimotor states further provide insights on processes supporting retrospective timing. These lines of evidence show that acknowledging its dependence on bodily states is most likely a crucial step toward a mechanistic understanding of time perception.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Garcia-Saldivar P, de León C, Mendez Salcido FA, Concha L, Merchant H. White matter structural bases for phase accuracy during tapping synchronization. eLife 2024; 13:e83838. [PMID: 39230417 PMCID: PMC11483129 DOI: 10.7554/elife.83838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/30/2024] [Indexed: 09/05/2024] Open
Abstract
We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum (CC), forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the CC. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the CC define an interval-selective topography.
Collapse
Affiliation(s)
- Pamela Garcia-Saldivar
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Cynthia de León
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Felipe A Mendez Salcido
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
- International Laboratory for Brain, Music and Sound (BRAMS)MontrealCanada
| | - Hugo Merchant
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico
| |
Collapse
|
4
|
Kupers ER, Kim I, Grill-Spector K. Rethinking simultaneous suppression in visual cortex via compressive spatiotemporal population receptive fields. Nat Commun 2024; 15:6885. [PMID: 39128923 PMCID: PMC11317513 DOI: 10.1038/s41467-024-51243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
When multiple visual stimuli are presented simultaneously in the receptive field, the neural response is suppressed compared to presenting the same stimuli sequentially. The prevailing hypothesis suggests that this suppression is due to competition among multiple stimuli for limited resources within receptive fields, governed by task demands. However, it is unknown how stimulus-driven computations may give rise to simultaneous suppression. Using fMRI, we find simultaneous suppression in single voxels, which varies with both stimulus size and timing, and progressively increases up the visual hierarchy. Using population receptive field (pRF) models, we find that compressive spatiotemporal summation rather than compressive spatial summation predicts simultaneous suppression, and that increased simultaneous suppression is linked to larger pRF sizes and stronger compressive nonlinearities. These results necessitate a rethinking of simultaneous suppression as the outcome of stimulus-driven compressive spatiotemporal computations within pRFs, and open new opportunities to study visual processing capacity across space and time.
Collapse
Affiliation(s)
- Eline R Kupers
- Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Kupers ER, Kim I, Grill-Spector K. Rethinking simultaneous suppression in visual cortex via compressive spatiotemporal population receptive fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.24.546388. [PMID: 37461470 PMCID: PMC10350247 DOI: 10.1101/2023.06.24.546388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
When multiple visual stimuli are presented simultaneously in the receptive field, the neural response is suppressed compared to presenting the same stimuli sequentially. The prevailing hypothesis suggests that this suppression is due to competition among multiple stimuli for limited resources within receptive fields, governed by task demands. However, it is unknown how stimulus-driven computations may give rise to simultaneous suppression. Using fMRI, we find simultaneous suppression in single voxels, which varies with both stimulus size and timing, and progressively increases up the visual hierarchy. Using population receptive field (pRF) models, we find that compressive spatiotemporal summation rather than compressive spatial summation predicts simultaneous suppression, and that increased simultaneous suppression is linked to larger pRF sizes and stronger compressive nonlinearities. These results necessitate a rethinking of simultaneous suppression as the outcome of stimulus-driven compressive spatiotemporal computations within pRFs, and open new opportunities to study visual processing capacity across space and time.
Collapse
Affiliation(s)
| | - Insub Kim
- Department of Psychology, Stanford University, CA, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, CA, USA
| |
Collapse
|
6
|
Grasso PA, Petrizzo I, Coniglio F, Arrighi R. Electrophysiological correlates of temporal numerosity adaptation. Front Neurosci 2024; 18:1349540. [PMID: 38505772 PMCID: PMC10948506 DOI: 10.3389/fnins.2024.1349540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Much research has revealed the human visual system is capable to estimate numerical quantities, rapidly and reliably, in both the spatial and the temporal domain. This ability is highly susceptible to short-term plastic phenomena related to previous exposure to visual numerical information (i.e., adaptation). However, while determinants of spatial numerosity adaptation have been widely investigated, little is known about the neural underpinnings of short-term plastic phenomena related to the encoding of temporal numerical information. In the present study we investigated the electrophysiological correlates of temporal numerosity adaptation. Methods Participants were asked to estimate the numerosity of a test sequence of flashes after being exposed to either a high or low numerous adapting sequence. Behavioral results confirmed the expected underestimation of test stimulus when this was preceded by a high numerous sequence as compared to when preceded by a low numerous sequence. Results Electrophysiological data revealed that this behavior was tightly linked to the amplitude of the steady-state visual evoked (ssVEP) response elicited by the test stimulus. When preceded by a high numerous sequence, the test stimulus elicited larger ssVEP responses as compared to when preceded by a low numerous sequence with this pattern being robustly correlated with behavior. Finally, topographical maps showed that this difference was mostly evident across two antero-posterior distributed clusters of electrodes and correlated with changes in functional connectivity. Discussion Taken together, our results suggest that visual plastic phenomena related to the encoding of temporal numerosity information reflect changes in rhythmic evoked activity that are likely related to long range communications between distinct brain regions.
Collapse
Affiliation(s)
- Paolo A. Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Irene Petrizzo
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Francesca Coniglio
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| | - Roberto Arrighi
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Tuscany, Italy
| |
Collapse
|
7
|
Hendrikx E, Paul JM, van Ackooij M, van der Stoep N, Harvey BM. Cortical quantity representations of visual numerosity and timing overlap increasingly into superior cortices but remain distinct. Neuroimage 2024; 286:120515. [PMID: 38216105 DOI: 10.1016/j.neuroimage.2024.120515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024] Open
Abstract
Many sensory brain areas are organized as topographic maps where neural response preferences change gradually across the cortical surface. Within association cortices, 7-Tesla fMRI and neural model-based analyses have also revealed many topographic maps for quantities like numerosity and event timing, often in similar locations. Numerical and temporal quantity estimations also show behavioral similarities and even interactions. For example, the duration of high-numerosity displays is perceived as longer than that of low-numerosity displays. Such interactions are often ascribed to a generalized magnitude system with shared neural responses across quantities. Anterior quantity responses are more closely linked to behavior. Here, we investigate whether common quantity representations hierarchically emerge by asking whether numerosity and timing maps become increasingly closely related in their overlap, response preferences, and topography. While the earliest quantity maps do not overlap, more superior maps overlap increasingly. In these overlapping areas, some intraparietal maps have consistently correlated numerosity and timing preferences, and some maps have consistent angles between the topographic progressions of numerosity and timing preferences. However, neither of these relationships increases hierarchically like the amount of overlap does. Therefore, responses to different quantities are initially derived separately, then progressively brought together, without generally becoming a common representation. Bringing together distinct responses to different quantities may underlie behavioral interactions and allow shared access to comparison and action planning systems.
Collapse
Affiliation(s)
- Evi Hendrikx
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands.
| | - Jacob M Paul
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville 3010, Victoria, Australia
| | - Martijn van Ackooij
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Nathan van der Stoep
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| | - Ben M Harvey
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, Utrecht 3584 CS, the Netherlands
| |
Collapse
|
8
|
Aqil M, Knapen T, Dumoulin SO. Computational model links normalization to chemoarchitecture in the human visual system. SCIENCE ADVANCES 2024; 10:eadj6102. [PMID: 38170784 PMCID: PMC10776006 DOI: 10.1126/sciadv.adj6102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
A goal of cognitive neuroscience is to provide computational accounts of brain function. Canonical computations-mathematical operations used by the brain in many contexts-fulfill broad information-processing needs by varying their algorithmic parameters. A key question concerns the identification of biological substrates for these computations and their algorithms. Chemoarchitecture-the spatial distribution of neurotransmitter receptor densities-shapes brain function. Here, we propose that local variations in specific receptor densities implement algorithmic modulations of canonical computations. To test this hypothesis, we combine mathematical modeling of brain responses with chemoarchitecture data. We compare parameters of divisive normalization obtained from 7-tesla functional magnetic resonance imaging with receptor density maps obtained from positron emission tomography. We find evidence that serotonin and γ-aminobutyric acid receptor densities are the biological substrate for algorithmic modulations of divisive normalization in the human visual system. Our model links computational and biological levels of vision, explaining how canonical computations allow the brain to fulfill broad information-processing needs.
Collapse
Affiliation(s)
- Marco Aqil
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Serge O. Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Experimental Psychology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Protopapa F, Kulashekhar S, Hayashi MJ, Kanai R, Bueti D. Effective connectivity in a duration selective cortico-cerebellar network. Sci Rep 2023; 13:20674. [PMID: 38001253 PMCID: PMC10673930 DOI: 10.1038/s41598-023-47954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
How the human brain represents millisecond unit of time is far from clear. A recent neuroimaging study revealed the existence in the human premotor cortex of a topographic representation of time i.e., neuronal units selectively responsive to specific durations and topographically organized on the cortical surface. By using high resolution functional Magnetic Resonance Images here, we go beyond this previous work, showing duration preferences across a wide network of cortical and subcortical brain areas: from cerebellum to primary visual, parietal, premotor and prefrontal cortices. Most importantly, we identify the effective connectivity structure between these different brain areas and their duration selective neural units. The results highlight the role of the cerebellum as the network hub and that of medial premotor cortex as the final stage of duration recognition. Interestingly, when a specific duration is presented, only the communication strength between the units selective to that specific duration and to the neighboring durations is affected. These findings link for the first time, duration preferences within single brain region with connectivity dynamics between regions, suggesting a communication mode that is partially duration specific.
Collapse
Affiliation(s)
| | | | - Masamichi J Hayashi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Ryota Kanai
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Araya, Inc., Tokyo, Japan
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
10
|
Kim I, Kupers ER, Lerma-Usabiaga G, Grill-Spector K. Characterizing spatiotemporal population receptive fields in human visual cortex with fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539164. [PMID: 37205541 PMCID: PMC10187260 DOI: 10.1101/2023.05.02.539164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of fMRI and computational modeling has advanced understanding of spatial characteristics of population receptive fields (pRFs) in human visual cortex. However, we know relatively little about the spatiotemporal characteristics of pRFs because neurons' temporal properties are one to two orders of magnitude faster than fMRI BOLD responses. Here, we developed an image-computable framework to estimate spatiotemporal pRFs from fMRI data. First, we developed a simulation software that predicts fMRI responses to a time varying visual input given a spatiotemporal pRF model and solves the model parameters. The simulator revealed that ground-truth spatiotemporal parameters can be accurately recovered at the millisecond resolution from synthesized fMRI responses. Then, using fMRI and a novel stimulus paradigm, we mapped spatiotemporal pRFs in individual voxels across human visual cortex in 10 participants. We find that a compressive spatiotemporal (CST) pRF model better explains fMRI responses than a conventional spatial pRF model across visual areas spanning the dorsal, lateral, and ventral streams. Further, we find three organizational principles of spatiotemporal pRFs: (i) from early to later areas within a visual stream, spatial and temporal integration windows of pRFs progressively increase in size and show greater compressive nonlinearities, (ii) later visual areas show diverging spatial and temporal integration windows across streams, and (iii) within early visual areas (V1-V3), both spatial and temporal integration windows systematically increase with eccentricity. Together, this computational framework and empirical results open exciting new possibilities for modeling and measuring fine-grained spatiotemporal dynamics of neural responses in the human brain using fMRI.
Collapse
Affiliation(s)
- Insub Kim
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Eline R. Kupers
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Garikoitz Lerma-Usabiaga
- BCBL. Basque Center on Cognition, Brain and Language, San Sebastian, Spain
- IKERBASQUE. Basque foundation for science, Bilbao, Spain
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Werth R. Dyslexia: Causes and Concomitant Impairments. Brain Sci 2023; 13:brainsci13030472. [PMID: 36979282 PMCID: PMC10046374 DOI: 10.3390/brainsci13030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In recent decades, theories have been presented to explain the nature of dyslexia, but the causes of dyslexia remained unclear. Although the investigation of the causes of dyslexia presupposes a clear understanding of the concept of cause, such an understanding is missing. The present paper proposes the absence of at least one necessary condition or the absence of all sufficient conditions as causes for impaired reading. The causes of impaired reading include: an incorrect fixation location, too short a fixation time, the attempt to recognize too many letters simultaneously, too large saccade amplitudes, and too short verbal reaction times. It is assumed that a longer required fixation time in dyslexic readers results from a functional impairment of areas V1, V2, and V3 that require more time to complete temporal summation. These areas and areas that receive input from them, such as the fusiform gyrus, are assumed to be impaired in their ability to simultaneously process a string of letters. When these impairments are compensated by a new reading strategy, reading ability improves immediately.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
12
|
Gao Z, Jiang C, Zhang J, Jiang X, Li L, Zhao P, Yang H, Huang Y, Li J. Hierarchical graph learning for protein-protein interaction. Nat Commun 2023; 14:1093. [PMID: 36841846 PMCID: PMC9968329 DOI: 10.1038/s41467-023-36736-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
Protein-Protein Interactions (PPIs) are fundamental means of functions and signalings in biological systems. The massive growth in demand and cost associated with experimental PPI studies calls for computational tools for automated prediction and understanding of PPIs. Despite recent progress, in silico methods remain inadequate in modeling the natural PPI hierarchy. Here we present a double-viewed hierarchical graph learning model, HIGH-PPI, to predict PPIs and extrapolate the molecular details involved. In this model, we create a hierarchical graph, in which a node in the PPI network (top outside-of-protein view) is a protein graph (bottom inside-of-protein view). In the bottom view, a group of chemically relevant descriptors, instead of the protein sequences, are used to better capture the structure-function relationship of the protein. HIGH-PPI examines both outside-of-protein and inside-of-protein of the human interactome to establish a robust machine understanding of PPIs. This model demonstrates high accuracy and robustness in predicting PPIs. Moreover, HIGH-PPI can interpret the modes of action of PPIs by identifying important binding and catalytic sites precisely. Overall, "HIGH-PPI [ https://github.com/zqgao22/HIGH-PPI ]" is a domain-knowledge-driven and interpretable framework for PPI prediction studies.
Collapse
Affiliation(s)
- Ziqi Gao
- Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China.,Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chenran Jiang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Jiawen Zhang
- Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China
| | - Xiaosen Jiang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Lanqing Li
- AI Lab, Tencent, Shenzhen, 518000, China
| | | | - Huanming Yang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jia Li
- Data Science and Analytics, The Hong Kong University of Science and Technology, Guangzhou, 511400, China. .,Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|