1
|
Li G, Wang R, Li C, Li L, Zhang X. 2D Nano-Quartz Aerogels Cloned via Chemical Vapor Deposition Enable High-Power Laser Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2504799. [PMID: 40326198 DOI: 10.1002/smll.202504799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Artificial synthesis of silica aerogel, either with crystalline quartz building blocks rather than present amorphous ones, or with greater than 0D building blocks rather than present nano-spherical ones, has become a century-old problem in light of its invention in 1931. Herein, 2D nano-quartz aerogels (QAs) with various configurations (e.g., ultrafine or hollow fiber, thin film, lightweight monolith, etc.) are all successfully cloned by chemical vapor deposition of silica source onto graphene aerogel skeletons to form ultrathin ceramic layers with carbon-leaving-induced crystallization during subsequent carbon etching. These QAs not only possess large amounts of graphene-like nanosheets with typical α-quartz phase, but exhibit ultralow density (as low as 1.5 mg cm-3), large specific surface area (up to 836 m2 g-1), superior thermal-insulation (∼20 mW m-1·K-1 in air), configuration-dependent flexibility, more than 600 °C higher thermal stability than traditional amorphous silica aerogel, and promising high-power (>102 W) light-scattering ability, indicating these QAs might be used as the distinct diffusers for high-power laser-driven lighting and high power laser shielding. This research might open numerous possibilities in developing quartz-like crystalline aerogels with 2D nano-building blocks.
Collapse
Affiliation(s)
- Guangyong Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ruina Wang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Chenbo Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lishan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- College of Textile Science and Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Ma DF, Liu HQ, Zhang XY, Jia YN, Zhang X, Niu F, Zhang KF, Zhao YQ. N-doped graphdiyne derivative for highly selective and ultrasensitive NH 3 sensing at room temperature. Phys Chem Chem Phys 2025. [PMID: 40018798 DOI: 10.1039/d4cp04718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The detection of ammonia (NH3) at room temperature is of paramount importance for human health, production safety, and environmental protection. However, the application of common NH3-sensitive materials is seriously limited by their low sensitivity and poor selectivity. Herein, starting from molecular structure design, an N-doped graphdiyne derivative (N-GDYD) with a definite N-doping site was synthesized via the Glaser coupling of 2,4,6-tris((trimethylsilyl) ethynyl)-1,3,5-triazine. Owing to the rich ethynyl groups and triazine N atoms, the N-GDYD gas sensor showed excellent NH3 sensing performance at room temperature (20 °C). For instance, it possessed a high response value of -67.7%, an extremely short response time of 92 s, and a short recovery time of 280 s for 100 ppm NH3. Although the NH3 concentration decreased to 10 ppb, it still exhibited a response of -12.4%. In particular, the N-GDYD gas sensor exhibited a specific response to NH3 and showed negligible responses to 13 other types of gases and organic reagent vapors. In situ UV-vis spectra and DFT calculation results confirmed that the alkyne bond and N atoms in the triazine ring were the adsorption sites for NH3. These active sites have strong interactions with NH3 and thus promoted electron transportation from the NH3 molecules to N-GDYD. Evidently, this work provides a new strategy for the design of high-performance NH3 sensing materials.
Collapse
Affiliation(s)
- Dong-Feng Ma
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China.
| | - Hai-Qi Liu
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xi-Yu Zhang
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Ya-Nan Jia
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xue Zhang
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Fang Niu
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Kai-Feng Zhang
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, Gansu 730000, China.
| | - Yong-Qing Zhao
- Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Stroganov V, Nöthel T, Hüger D, Kruk M, Neumann C, Kozieł K, Cyganik P, Turchanin A. Tailored Permeation Through ≈1 nm Thick Carbon Nanomembranes by Subtle Changes in Their Molecular Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406526. [PMID: 39363779 PMCID: PMC11636063 DOI: 10.1002/smll.202406526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Due to their nanoscale thickness (≈1 nm) and exceptional selectivity for permeation of gases, nanomembranes made of 2D materials possess high potential for energy-efficient nanofiltration applications. In this respect, organic carbon nanomembranes (CNMs), synthesized via electron irradiation-induced crosslinking of aromatic self-assembled monolayers (SAMs), are particularly attractive, as their structure can be flexibly tuned by choice of molecular precursors. However, tailored permeation of CNMs, defined by their molecular design, has not been yet demonstrated. In this work, it is shown that the permeation of helium (He), deuterium (D2) and heavy water (D2O) for CNMs synthesized from biphenyl-based SAMs on silver (C6H5-C6H4-(CH2)n-COO/Ag, n = 2-6) can be tuned by orders of magnitude by changing the structure of the molecular precursors by just a single methylene unit. The selectivity in permeation of D2O/D2 with an unprecedented value of 200 000 can be achieved in this way. The temperature-dependent study reveals a clear correlation between the molecular design and the permeation mechanisms facilitating therewith tailored synthesis of molecular 2D materials for separation technologies.
Collapse
Affiliation(s)
- Vladislav Stroganov
- Institute of Physical ChemistryFriedrich Schiller University Jena07743JenaGermany
| | - Tabata Nöthel
- Institute of Physical ChemistryFriedrich Schiller University Jena07743JenaGermany
| | - Daniel Hüger
- Institute of Physical ChemistryFriedrich Schiller University Jena07743JenaGermany
| | - Monika Kruk
- Smoluchowski Institute of PhysicsJagiellonian UniversityKrakow30–348Poland
| | - Christof Neumann
- Institute of Physical ChemistryFriedrich Schiller University Jena07743JenaGermany
| | | | - Piotr Cyganik
- Smoluchowski Institute of PhysicsJagiellonian UniversityKrakow30–348Poland
| | - Andrey Turchanin
- Institute of Physical ChemistryFriedrich Schiller University Jena07743JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)07743JenaGermany
- Jena Center for Soft Matter07743JenaGermany
| |
Collapse
|
4
|
Rafiei MA, Campos-Martínez J, Bartolomei M, Pirani F, Maghari A, Hernández MI. Separation of oxygen from nitrogen using a graphdiyne membrane: a quantum-mechanical study. Phys Chem Chem Phys 2024; 26:24553-24563. [PMID: 39268702 DOI: 10.1039/d4cp02287d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Efficient separation of oxygen and nitrogen from air is a process of great importance for many industrial and medical applications. Two-dimensional (2D) membranes are very promising materials for separation of gases, as they offer enhanced mass transport due to their smallest atomic thickness. In this work, we examine the capacity of graphdiyne (GDY), a new 2D carbon allotrope with regular subnanometric pores, for separating oxygen (16O2) from nitrogen (14N2). A quantum-mechanical model has been applied to the calculation of the transmission probabilities and permeances of these molecules through GDY using force fields based on accurate electronic structure computations. It is found that the 16O2/14N2 selectivity (ratio of permeances) is quite high (e.g., about 106 and 102 at 100 and 300 K, respectively), indicating that GDY can be useful for separation of these species, even at room temperature. This is mainly due to the N2 transmission barrier (∼0.37 eV) which is considerably higher than the O2 one (∼0.25 eV). It is also found that molecular motions are quite confined inside the GDY pores and that, as a consequence, quantum effects (zero-point energy) are significant in the studied processes. Finally, we explore the possibility of 18O2/16O2 isotopologue separation due to these mass-dependent quantum effects, but it is found that the process is not practical since reasonable selectivities are concomitant with extremely small permeances.
Collapse
Affiliation(s)
- Maryam A Rafiei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Fernando Pirani
- Departimento di Chimica, Biologia e Biotecnologie, Università di Perugia, via Elce di Sotto 8, Perugia, 06123, Italy
| | - Ali Maghari
- Department of Physical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Marta I Hernández
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
5
|
Guo Y, Zhang R, Zhang S, Hong H, Li P, Zhao Y, Huang Z, Zhi C. Steering sp-Carbon Content in Graphdiynes for Enhanced Two-Electron Oxygen Reduction to Hydrogen Peroxide. Angew Chem Int Ed Engl 2024; 63:e202401501. [PMID: 38589296 DOI: 10.1002/anie.202401501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Compared to sp2-hybridized graphene, graphdiynes (GDYs) composed of sp and sp2 carbon are highly promising as efficient catalysts for electrocatalytic oxygen reduction into oxygen peroxide because of the high catalytic reactivity of the electron-rich sp-carbon atoms. The desired catalytic capacity of GDY, such as catalytic selectivity and efficiency, can theoretically be achieved by strategically steering the sp-carbon contents or the topological arrangement of the acetylenic linkages and aromatic bonds. Herein, we successfully tuned the electrocatalytic activity of GDYs by regulating the sp-to-sp2 carbon ratios with different organic monomer precursors. As the active sp-carbon atoms possess electron-sufficient π orbitals, they can donate electrons to the lowest unoccupied molecular orbital (LUMO) orbitals of O2 molecules and initiate subsequent O2 reduction, GDY with the high sp-carbon content of 50 at % exhibits excellent capability of catalyzing O2 reduction into H2O2. It demonstrates exceptional H2O2 selectivity of over 95.0 % and impressive performance in practical H2O2 production, Faraday efficiency (FE) exceeding 99.0 %, and a yield of 83.3 nmol s-1 cm-2. Our work holds significant importance in effectively steering the inherent properties of GDYs by purposefully adjusting the sp-to-sp2 carbon ratio and highlights their immense potential for research and applications in catalysis and other fields.
Collapse
Affiliation(s)
- Ying Guo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
6
|
Nidhi HV, Koppad VS, Babu AM, Varghese A. Properties, Synthesis and Emerging Applications of Graphdiyne: A Journey Through Recent Advancements. Top Curr Chem (Cham) 2024; 382:19. [PMID: 38762848 DOI: 10.1007/s41061-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Graphdiyne (GDY) is a new variant of nano-carbon material with excellent chemical, physical and electronic properties. It has attracted wide attention from researchers and industrialists for its extensive role in the fields of optics, electronics, bio-medics and energy. The unique arrangement of sp-sp2 carbon atoms, linear acetylenic linkages, uniform pores and highly conjugated structure offer numerous potentials for further exploration of GDY materials. However, since the material is at its infancy, not much understanding is available regarding its properties, growth mechanism and future applications. Therefore, in this review, readers are guided through a brief discussion on GDY's properties, different synthesis procedures with a special focus on surface functionalization and a list of applications for GDY. The review also critically analyses the advantages and disadvantages of each synthesis route and emphasizes the future scope of the material.
Collapse
Affiliation(s)
- H V Nidhi
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Vinayaka S Koppad
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Ann Mariella Babu
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India
| | - Anitha Varghese
- CHRIST (Deemed to Be University), Bangalore, Karnataka, 560029, India.
| |
Collapse
|
7
|
Cherni L, El Rifaii K, Wensink HH, Chevrier SM, Goldmann C, Michot LJ, Davidson P, Gabriel JCP. Crystalline restacking of 2D-materials from their nanosheets suspensions. NANOSCALE 2023; 15:18359-18367. [PMID: 37930119 DOI: 10.1039/d3nr04885c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
We report here the highly ordered restacking of the layered phosphatoantimonic dielectric materials H3(1-x)M3xSb3P2O14, (where M = Li, Na, K, Rb, Cs and 0 ≤ x ≤ 1), from their nanosheets dispersed in colloidal suspension, induced by a simple pH change using alkaline bases. H3Sb3P2O14 aqueous suspensions are some of the rare examples of colloidal suspensions based on 2D materials exhibiting a lamellar liquid crystalline phase. Because the lamellar period can reach several hundred nanometers, the suspensions show vivid structural colors and because these colors are sensitive to various chemicals, the suspensions can be used as sensors. The structures of the lamellar liquid crystalline phase and the restacked phase have been studied by X-ray scattering (small and wide angle), which has followed the dependence of the lamellar/restacked phase equilibrium on the cation exchange rate, x. The X-ray diffraction pattern of the restacked phase is almost identical to that of the M3Sb3P2O14 crystalline phase, showing that the restacking is highly accurate and avoids the turbostratic disorder of the nanosheets classically observed in nanosheet stacking of other 2D materials. Strikingly, the restacking process exhibits features highly reminiscent of a first-order phase transition, with the existence of a phase coexistence region where both ∼1 nm (interlayer spacing of the restacked phase) and ∼120 nm lamellar periods can be observed simultaneously. Furthermore, this first-order phase transition is well described theoretically by incorporating a Lennard-Jones-type lamellar interaction potential into an entropy-based statistical physics model of the lamellar phase of nanosheets. Our work shows that the precise cation exchange produced at room temperature by a classical neutralization reaction using alkaline bases leads to a crystal-like restacking of the exfoliated free Sb3P2O143- nanosheets from suspension, avoiding the turbostratic disorder typical of van der Waals 2D materials, which is detrimental to the controlled deposition of nanosheets into complex integrated electronic, spintronic, photonic or quantum structures.
Collapse
Affiliation(s)
- Lina Cherni
- Université Paris-Saclay, CEA, CNRS, NIMBE-LICSEN, 91191 Gif-sur-Yvette, France.
| | - Karin El Rifaii
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Sarah M Chevrier
- Université Paris-Saclay, CEA, CNRS, NIMBE-LICSEN, 91191 Gif-sur-Yvette, France.
| | - Claire Goldmann
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | - Laurent J Michot
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005 Paris, France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France.
| | | |
Collapse
|
8
|
Vahdat M, Li S, Huang S, Bondaz L, Bonnet N, Hsu KJ, Marzari N, Agrawal KV. Mechanistic Insights on Functionalization of Graphene with Ozone. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:22015-22022. [PMID: 38024196 PMCID: PMC10658624 DOI: 10.1021/acs.jpcc.3c03994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
The exposure of graphene to O3 results in functionalization of its lattice with epoxy, even at room temperature. This reaction is of fundamental interest for precise lattice patterning, however, is not well understood. Herein, using van der Waals density functional theory (vdW-DFT) incorporating spin-polarized calculations, we find that O3 strongly physisorbs on graphene with a binding energy of -0.46 eV. It configures in a tilted position with the two terminal O atoms centered above the neighboring graphene honeycombs. A dissociative chemisorption follows by surpassing an energy barrier of 0.75 eV and grafting an epoxy group on graphene reducing the energy of the system by 0.14 eV from the physisorbed state. Subsequent O3 chemisorption is preferred on the same honeycomb, yielding two epoxy groups separated by a single C-C bridge. We show that capturing the onset of spin in oxygen during chemisorption is crucial. We verify this finding with experiments where an exponential increase in the density of epoxy groups as a function of reaction temperature yields an energy barrier of 0.66 eV, in agreement with the DFT prediction. These insights will help efforts to obtain precise patterning of the graphene lattice.
Collapse
Affiliation(s)
- Mohammad
Tohidi Vahdat
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
- Theory
and Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, Lausanne CH-1015, Switzerland
| | - Shaoxian Li
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Shiqi Huang
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Luc Bondaz
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Nicéphore Bonnet
- Theory
and Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, Lausanne CH-1015, Switzerland
| | - Kuang-Jung Hsu
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Nicola Marzari
- Theory
and Simulation of Materials (THEOS) and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), EPFL, Lausanne CH-1015, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory
of Advanced Separations (LAS), École
Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| |
Collapse
|
9
|
Zheng X, Chen S, Li J, Wu H, Zhang C, Zhang D, Chen X, Gao Y, He F, Hui L, Liu H, Jiu T, Wang N, Li G, Xu J, Xue Y, Huang C, Chen C, Guo Y, Lu TB, Wang D, Mao L, Zhang J, Zhang Y, Chi L, Guo W, Bu XH, Zhang H, Dai L, Zhao Y, Li Y. Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research. ACS NANO 2023. [PMID: 37471703 DOI: 10.1021/acsnano.3c03849] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Danyan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonggang Jiu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300350, P. R. China
| | - Dan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering and Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials, Soochow University, Soochow 1215031, P. R. China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Li H, Lim JH, Lv Y, Li N, Kang B, Lee JY. Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances. Chem Rev 2023; 123:4795-4854. [PMID: 36921251 DOI: 10.1021/acs.chemrev.2c00729] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Carbon allotropes have contributed to all aspects of people's lives throughout human history. As emerging carbon-based low-dimensional materials, graphyne family members (GYF), represented by graphdiyne, have a wide range potential applications due to their superior physical and chemical properties. In particular, graphdiyne (GDY), as the leader of the graphyne family, has been practically applied to various research fields since it was first successfully synthesized. GYF have a large surface area, both sp and sp2 hybridization, and a certain band gap, which was considered to originate from the overlap of carbon 2pz orbitals and the inhomogeneous π-bonds of carbon atoms in different hybridization forms. These properties mean GYF-based materials still have many potential applications to be developed, especially in energy storage and catalytic utilization. Since most of the GYF have yet to be synthesized and applications of successfully synthesized GYF have not been developed for a long time, theoretical results in various application fields should be shared to experimentalists to attract more intentions. In this Review, we summarized and discussed the synthesis, structural properties, and applications of GYF-based materials from the theoretical insights, hoping to provide different viewpoints and comments.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jong Hyeon Lim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yipin Lv
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Nannan Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
11
|
Liu Q, Chen M, Chen G, Liu G, Xu R, Jin W. Molecular design of two-dimensional graphdiyne membrane for selective transport of CO2 and H2 over CH4, N2, and CO. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
12
|
Luan X, Qi L, Zheng Z, Gao Y, Xue Y, Li Y. Step by Step Induced Growth of Zinc-Metal Interface on Graphdiyne for Aqueous Zinc-Ion Batteries. Angew Chem Int Ed Engl 2023; 62:e202215968. [PMID: 36593176 DOI: 10.1002/anie.202215968] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Rechargeable aqueous zinc ion batteries (AZIBs) promise high energy density, low redox potential, low cost and safety; however, their cycle performances are seriously insufficient to restrict the progress in this field. We propose a new concept of atomic electrode formed on the graphdiyne (GDY). This new idea electrode was synthesized by selectively, uniformly, and stably anchoring Zn atoms on GDY at the beginning of plating. The Zn atoms are induced to grow into larger size Zn clusters, which continue to grow into nanoflat. Finally, a new heterojunction interface is formed on GDY without any Zn dendrites and side reactions, even at high current densities. Such stepwise induction of growth greatly suppresses the formation of Zn dendrites, resulting in high electroplating/stripping reversibility and lifespan of AZIBs.
Collapse
Affiliation(s)
- Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, P.R. China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, P.R. China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, P.R. China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, P.R. China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, P.R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100, P.R. China.,CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China.,School of Chemical Science, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Yang X, Qu Z, Li S, Peng M, Li C, Hua R, Fan H, Caro J, Meng H. Ultra-Fast Preparation of Large-Area Graphdiyne-Based Membranes via Alkynylated Surface-Modification for Nanofiltration. Angew Chem Int Ed Engl 2023; 62:e202217378. [PMID: 36692831 DOI: 10.1002/anie.202217378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Graphdiynes (GDYs), two-dimensional graphene-like carbon systems, are considered as potential advanced membrane material due to their unique physicochemical features. Nevertheless, the scale-up of integrated GDY membranes is technologically challenging, and most studies remain at the theoretical stage. Herein, we report a simple and efficient alkynylated surface-mediated strategy to prepare hydrogen-substituted graphdiyne (HsGDY) membranes on commercial alumina tubes. Surface alkynylation initiates an accelerated surface-confined coupling reaction in the presence of a copper catalyst and facilitates the nanoscale epitaxial lateral growth of HsGDY. A continuous and ultra-thin HsGDY membrane (∼100 nm) can be produced within 15 min. The resulting membranes exhibit outstanding molecular sieving together with excellent water permeances (ca. 1100 L m-2 h-1 MPa-1 ), and show a long-term durability in cross-flow nanofiltration, owing to the superhydrophilic surface and hydrophobic pore walls.
Collapse
Affiliation(s)
- Xingda Yang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Qu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sen Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Manhua Peng
- Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Chunxi Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruimao Hua
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| | - Hongwei Fan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jürgen Caro
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
14
|
Wang Y, An J, Qi L, Xue Y, Li G, Lyu Q, Yang W, Li Y. Synthesis of Crystalline Phosphine-Graphdiyne with Self-Adaptive p-π Conjugation. J Am Chem Soc 2023; 145:864-872. [PMID: 36548209 DOI: 10.1021/jacs.2c09209] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
"Dynamic" behavior materials with high surface activity and the ability of chemical bond conversion are the frontier materials in the field of renewable energy. The outstanding feature of these materials is that they have adaptive electronic properties that external stimuli can adjust. An original discovery in a new crystalline two-dimensional phosphine-graphdiyne (P-GDY) material is described here. Although the p-π conjugation of most trivalent phosphorus π-systems is insignificant because of the pyramidal configuration, the lone pair electrons of phosphorus atoms participate strongly in the delocalization under the influence of the interlayer van der Waals forces in P-GDY. Due to the dynamically reversible nature of noncovalent interactions (p-π conjugation), P-GDY exhibits a specific adaptive behavior and realizes the responsive reversible transport of a lithium ion by regulating p-π interactions. Our findings would provide the potential to develop a new family of responsive materials with tunable structures.
Collapse
Affiliation(s)
- Yijie Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Juan An
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Qiang Lyu
- Schools of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Wenlong Yang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.,Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|