1
|
Ghosh AK, Chen Y, Gadi RK, Sonawane A, Gamage SP, Tesmer JG. Design, synthesis, and X-ray structural studies of a series of highly potent, selective, and drug-like G protein-coupled receptor kinase 5 inhibitors. Eur J Med Chem 2025; 282:117024. [PMID: 39549325 DOI: 10.1016/j.ejmech.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/18/2024]
Abstract
G protein-coupled receptor kinase 5 (GRK5) has emerged as a potential drug development target against heart failure and cancer. A close homolog, GRK6 represents a therapeutic target for multiple myeloma. We have rationally designed a series of highly selective, potent, noncovalent, and drug-like GRK5 inhibitors. Several inhibitors exhibited low nanomolar GRK5 inhibition and high selectivity over GRK2, and, surprisingly, some were selective for GRK6. We determined high-resolution X-ray crystal structures of several inhibitors in complex with GRK5, which provide molecular insights into the ligand-binding site interactions responsible for GRK5 selectivity and potency.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | - Yueyi Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ranjith Kumar Gadi
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Amol Sonawane
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sandali Piladuwa Gamage
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - JohnJ G Tesmer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Zhang K, Yang X, Wang Y, Yu Y, Huang N, Li G, Li X, Wu JC, Yang S. Artificial intelligence in drug development. Nat Med 2025; 31:45-59. [PMID: 39833407 DOI: 10.1038/s41591-024-03434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Drug development is a complex and time-consuming endeavor that traditionally relies on the experience of drug developers and trial-and-error experimentation. The advent of artificial intelligence (AI) technologies, particularly emerging large language models and generative AI, is poised to redefine this paradigm. The integration of AI-driven methodologies into the drug development pipeline has already heralded subtle yet meaningful enhancements in both the efficiency and effectiveness of this process. Here we present an overview of recent advancements in AI applications across the entire drug development workflow, encompassing the identification of disease targets, drug discovery, preclinical and clinical studies, and post-market surveillance. Lastly, we critically examine the prevailing challenges to highlight promising future research directions in AI-augmented drug development.
Collapse
Affiliation(s)
- Kang Zhang
- Eye Hospital and Institute for Advanced Study on Eye Health and Diseases, Institute for clinical Data Science, Wenzhou Medical University, Wenzhou, China.
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, Wenzhou Medical University, Wenzhou, China.
| | - Xin Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfang Yu
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute for AI in Medicine and faculty of Medicine, Macau University of Science and Technology, Macau, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Niu Huang
- National Institute of Biological Sciences, Beijing, China
| | - Gen Li
- Eye Hospital and Institute for Advanced Study on Eye Health and Diseases, Institute for clinical Data Science, Wenzhou Medical University, Wenzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Eye and Vision Innovation Center, Eye Valley, Wenzhou, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, Wenzhou Medical University, Wenzhou, China
| | - Joseph C Wu
- Cardiovascular Research Institute, Stanford University, Stanford, CA, USA
| | - Shengyong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Sun D, Macedonia C, Chen Z, Chandrasekaran S, Najarian K, Zhou S, Cernak T, Ellingrod VL, Jagadish HV, Marini B, Pai M, Violi A, Rech JC, Wang S, Li Y, Athey B, Omenn GS. Can Machine Learning Overcome the 95% Failure Rate and Reality that Only 30% of Approved Cancer Drugs Meaningfully Extend Patient Survival? J Med Chem 2024; 67:16035-16055. [PMID: 39253942 DOI: 10.1021/acs.jmedchem.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Despite implementing hundreds of strategies, cancer drug development suffers from a 95% failure rate over 30 years, with only 30% of approved cancer drugs extending patient survival beyond 2.5 months. Adding more criteria without eliminating nonessential ones is impractical and may fall into the "survivorship bias" trap. Machine learning (ML) models may enhance efficiency by saving time and cost. Yet, they may not improve success rate without identifying the root causes of failure. We propose a "STAR-guided ML system" (structure-tissue/cell selectivity-activity relationship) to enhance success rate and efficiency by addressing three overlooked interdependent factors: potency/specificity to the on/off-targets determining efficacy in tumors at clinical doses, on/off-target-driven tissue/cell selectivity influencing adverse effects in the normal organs at clinical doses, and optimal clinical doses balancing efficacy/safety as determined by potency/specificity and tissue/cell selectivity. STAR-guided ML models can directly predict clinical dose/efficacy/safety from five features to design/select the best drugs, enhancing success and efficiency of cancer drug development.
Collapse
Affiliation(s)
| | | | - Zhigang Chen
- LabBotics.ai, Palo Alto, California 94303, United States
| | | | | | - Simon Zhou
- Aurinia Pharmaceuticals Inc., Rockville, Maryland 20850, United States
| | | | | | | | | | | | | | | | | | - Yan Li
- Translational Medicine and Clinical Pharmacology, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | | | | |
Collapse
|
4
|
Cichońska A, Ravikumar B, Rahman R. AI for targeted polypharmacology: The next frontier in drug discovery. Curr Opin Struct Biol 2024; 84:102771. [PMID: 38215530 DOI: 10.1016/j.sbi.2023.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
In drug discovery, targeted polypharmacology, i.e., targeting multiple molecular targets with a single drug, is redefining therapeutic design to address complex diseases. Pre-selected pharmacological profiles, as exemplified in kinase drugs, promise enhanced efficacy and reduced toxicity. Historically, many of such drugs were discovered serendipitously, limiting predictability and efficacy, but currently artificial intelligence (AI) offers a transformative solution. Machine learning and deep learning techniques enable modeling protein structures, generating novel compounds, and decoding their polypharmacological effects, opening an avenue for more systematic and predictive multi-target drug design. This review explores the use of AI in identifying synergistic co-targets and delineating them from anti-targets that lead to adverse effects, and then discusses advances in AI-enabled docking, generative chemistry, and proteochemometric modeling of proteome-wide compound interactions, in the context of polypharmacology. We also provide insights into challenges ahead.
Collapse
|
5
|
Chen Y, Sonawane A, Manda R, Gadi RK, Tesmer JJG, Ghosh AK. Development of a new class of potent and highly selective G protein-coupled receptor kinase 5 inhibitors and structural insight from crystal structures of inhibitor complexes. Eur J Med Chem 2024; 264:115931. [PMID: 38016297 PMCID: PMC10841647 DOI: 10.1016/j.ejmech.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023]
Abstract
G protein-coupled receptor kinase 5 (GRK5) is an important drug development target for heart failure, cardiac hypertrophy, and cancer. We have designed and developed a new class of highly selective, potent, and non-covalent GRK5 inhibitors. One of the inhibitors displayed GRK5 IC50 value of 10 nM and exhibited >100,000-fold selectivity over GRK2. The X-ray structure of a ketoamide-derived inhibitor-bound GRK5 showed the formation of a hemithioketal intermediate with active site Cys474 in the GRK5 active site and provided new insights into the ligand-binding site interactions responsible for high selectivity. The current studies serve as an important guide to therapeutic GRK5 inhibitor drug development.
Collapse
Affiliation(s)
- Yueyi Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Amol Sonawane
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajesh Manda
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjith Kumar Gadi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Arun K Ghosh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
7
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
8
|
Wydra VR, Ditzinger RB, Seidler NJ, Hacker FW, Laufer SA. A patent review of MAPK inhibitors (2018 - present). Expert Opin Ther Pat 2023; 33:421-444. [PMID: 37501497 DOI: 10.1080/13543776.2023.2242584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION The mitogen-activated protein kinase (MAPK) family consist of p38 MAP kinases, c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs). They are involved in a multitude of diseases, including inflammatory, autoimmune, neurodegenerative, and metabolic diseases as well as cancer. In recent years, further developments in the field of MAPK-inhibitors have been reported, including an isoform or downstream target selective inhibition of MAPKs as well as target protein degradation approaches. AREAS COVERED This review summarizes newly patented MAPK-inhibitors that were claimed between 2018 and early 2023. Presented are the patents as well as their corresponding publications, the storyline of development, and clinical trials involving these compounds. This article elaborates a total of 27 patents, which were identified using established search engines. EXPERT OPINION Although industrial research on MAPK-inhibitors has been ongoing for more than 20 years, novel clinical trials of MAPK-inhibitors as potential drug candidates are still being conducted in the period under review. Recently reported inhibitors show an excellent selectivity profile and are even achieving selectivity between closely related isoforms. This progression offers the possibility to eliminate unwanted side effects and may finally lead to the approval of the first MAPK-inhibitor.
Collapse
Affiliation(s)
- Valentin R Wydra
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Raphael B Ditzinger
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Nico J Seidler
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Frederik W Hacker
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls Universit't Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided & Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (Tücad2), Tübingen, Germany
| |
Collapse
|