1
|
Mahapatra S, Shivpuje SB, Campbell HC, Wan B, Lomont J, Dong B, Ma S, Mohn KJ, Zhang C. Label-Free Quantification of Apoptosis and Necrosis Using Stimulated Raman Scattering Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.641010. [PMID: 40093126 PMCID: PMC11908225 DOI: 10.1101/2025.03.01.641010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Recombinant proteins are critical for modern therapeutics and diagnostics, with Chinese hamster ovary (CHO) cells serving as the primary production platform. However, environmental and chemical stressors in bioreactors often trigger cell death, particularly apoptosis, posing a significant challenge to recombinant protein manufacturing. Rapid, label-free methods to monitor cell death are essential for ensuring better production quality. Stimulated Raman scattering (SRS) microscopy offers a powerful, label-free approach to measure lipid and protein compositions in live cells. We demonstrate that SRS microscopy enables rapid and reagent-free analysis of apoptotic and necrotic transitions. Our results show that apoptotic cells exhibit higher protein concentrations, while necrotic cells show an opposite trend. To enhance analysis, we developed a quantitative single-cell analysis pipeline that extracts chemotypic and phenotypic signatures of apoptosis and necrosis, enabling the identification of subpopulations with varied responses to stressors or treatments. Furthermore, the cell death analysis was successfully generalized to other stressors and cell types. This study highlights SRS microscopy as a robust and non-invasive tool for rapid monitoring of live cell apoptotic and necrotic transitions. Our method and findings hold potential for improving quality control in CHO cell-based biopharmaceutical production and for evaluating cell death in diverse biological contexts.
Collapse
Affiliation(s)
- Shivam Mahapatra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Shreya B Shivpuje
- Department of Statistics, Purdue University, 150 N University St, West Lafayette, IN 47907, USA
| | - Helen C Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | | | | | - B Dong
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Seohee Ma
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Karsten J Mohn
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chi Zhang
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Ma S, Dong B, Clark MG, Everly RM, Mahapatra S, Zhang C. Real-Time and Site-Specific Perturbation of Dynamic Subcellular Compartments Using Femtosecond Pulses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639204. [PMID: 40060565 PMCID: PMC11888216 DOI: 10.1101/2025.02.19.639204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Understanding laser interactions with subcellular compartments is crucial for advancing optical microscopy, phototherapy, and optogenetics. While continuous-wave (CW) lasers rely on linear absorption, femtosecond (fs) lasers enable nonlinear multiphoton absorption confined to the laser focus, offering high axial precision. However, current fs laser delivery methods lack the ability to target dynamic molecular entities and automate target selection, limiting real-time perturbation of biomolecules with mobility or complex distribution. Additionally, existing technologies separate fs pulse delivery and imaging, preventing simultaneous recording of cellular responses. To overcome these challenges, we introduce fs real-time precision opto-control (fs-RPOC), which integrates a laser scanning microscope with a closed-loop feedback mechanism for automated, chemically selective subcellular perturbation. fs-RPOC achieves superior spatial precision and fast response time, enabling single- and sub-organelle microsurgery of dynamic targets and localized molecular modulation. By applying a pulse-picking method, fs-RPOC independently controls laser average and peak power at any desired subcellular compartment. Targeting mitochondria, fs-RPOC reveals site-specific molecular responses resulting from fs-laser-induced ROS formation, H2O2 diffusion, and low-density plasma generation. These findings offer new insights into fs laser interactions with subcellular compartments and demonstrate fs-RPOC's potential for precise molecular and organelle regulation.
Collapse
Affiliation(s)
- Seohee Ma
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Bin Dong
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Matthew G Clark
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - R Michael Everly
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Shivam Mahapatra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Chi Zhang
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Gonzalez GA, Osuji EU, Fiur NC, Clark MG, Ma S, Lukov LL, Zhang C. Alteration of Lipid Metabolism in Hypoxic Cancer Cells. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:25-34. [PMID: 39886224 PMCID: PMC11775851 DOI: 10.1021/cbmi.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 02/01/2025]
Abstract
Due to uncontrolled cell proliferation and disrupted vascularization, many cancer cells in solid tumors have limited oxygen supply. The hypoxic microenvironments of tumors lead to metabolic reprogramming of cancer cells, contributing to therapy resistance and metastasis. To identify better targets for the effective removal of hypoxia-adaptive cancer cells, it is crucial to understand how cancer cells alter their metabolism in hypoxic conditions. Here, we studied lipid metabolic changes in cancer cells under hypoxia using coherent Raman scattering (CRS) microscopy. We discovered the accumulation of lipid droplets (LDs) in the endoplasmic reticulum (ER) in hypoxia. Time-lapse CRS microscopy revealed the release of old LDs and the reaccumulated LDs in the ER during hypoxia exposure. Additionally, we explored the impact of carbon sources on LD formation and found that MIA PaCa2 cells preferred fatty acid uptake for LD formation, while glucose was essential to alleviate lipotoxicity. Hyperspectral-stimulated Raman scattering (SRS) microscopy revealed a reduction in cholesteryl ester content and a decrease in lipid saturation levels of LDs in hypoxic MIA PaCa2 cancer cells. This alteration in LD content is linked to reduced efficacy of treatments targeting cholesteryl ester formation. This study unveils important lipid metabolic changes in hypoxic cancer cells, providing insights that could lead to better treatment strategies for hypoxia-resistant cancer cells.
Collapse
Affiliation(s)
- Gil A. Gonzalez
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Ezinne U. Osuji
- College
of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | - Natalie C. Fiur
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
| | - Matthew G. Clark
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Seohee Ma
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Laura L. Lukov
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Chi Zhang
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Purdue
Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana 47907, United States
- Purdue
Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Zhang J, Lin H, Xu J, Zhang M, Ge X, Zhang C, Huang WE, Cheng JX. High-throughput single-cell sorting by stimulated Raman-activated cell ejection. SCIENCE ADVANCES 2024; 10:eadn6373. [PMID: 39661682 PMCID: PMC11633747 DOI: 10.1126/sciadv.adn6373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/21/2024] [Indexed: 12/13/2024]
Abstract
Raman-activated cell sorting isolates single cells in a nondestructive and label-free manner, but its throughput is limited by small spontaneous Raman scattering cross section. Coherent Raman scattering integrated with microfluidics enables high-throughput cell analysis, but faces challenges with small cells (<3 μm) and tissue sections. Here, we report stimulated Raman-activated cell ejection (S-RACE) that enables high-throughput single-cell sorting by integrating stimulated Raman imaging, in situ image decomposition, and laser-induced cell ejection. S-RACE allows ejection of live bacteria or fungi guided by their Raman signatures. Furthermore, S-RACE successfully sorted lipid-rich Rhodotorula glutinis cells from a cell mixture with a throughput of ~13 cells per second, and the sorting results were confirmed by downstream quantitative polymerase chain reaction. Beyond single cells, S-RACE shows high compatibility with tissue sections. Incorporating a closed-loop feedback control circuit further enables real-time SRS imaging-identification-ejection. In summary, S-RACE opens exciting opportunities for diverse single-cell sorting applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
5
|
Mahapatra S, Ma S, Dong B, Zhang C. Quantification of cellular phototoxicity of organelle stains by the dynamics of microtubule polymerization. VIEW 2024; 5:20240013. [PMID: 40160868 PMCID: PMC11951871 DOI: 10.1002/viw.20240013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/13/2024] [Indexed: 04/02/2025] Open
Abstract
Being able to quantify the phototoxicity of dyes and drugs in live cells allows biologists to better understand cell responses to exogenous stimuli during imaging. This capability further helps to design fluorescent labels with lower phototoxicity and drugs with better efficacy. Conventional ways to evaluate cellular phototoxicity rely on late-stage measurements of individual or different populations of cells. Here, we developed a quantitative method using intracellular microtubule polymerization as a rapid and sensitive marker to quantify early-stage phototoxicity. Implementing this method, we assessed the photosensitization induced by organelle dyes illuminated with different excitation wavelengths. Notably, fluorescent markers targeting mitochondria, nuclei, and endoplasmic reticulum exhibited diverse levels of phototoxicity. Furthermore, leveraging a real-time precision opto-control technology allowed us to evaluate the synergistic effect of light and dyes on specific organelles. Studies in hypoxia revealed enhanced phototoxicity of Mito-Tracker Red CMXRos that is not correlated with the generation of reactive oxygen species but a different deleterious pathway in low oxygen conditions.
Collapse
Affiliation(s)
- Shivam Mahapatra
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Seohee Ma
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Bin Dong
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Clark MG, Mohn KJ, Dong B, Campbell HC, Zhang C. Frequency-Domain Low-Wavenumber Hyperspectral Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:10341-10347. [PMID: 38863402 DOI: 10.1021/acs.analchem.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In recent years, stimulated Raman scattering (SRS) microscopy has experienced rapid technological advancements and has found widespread applications in chemical analysis. Hyperspectral SRS (hSRS) microscopy further enhances the chemical selectivity in imaging by providing a Raman spectrum for each pixel. Time-domain hSRS techniques often require interferometry and ultrashort femtosecond laser pulses. They are especially suited to measuring low-wavenumber Raman transitions but are susceptible to scattering-induced distortions. Frequency-domain hSRS microscopy, on the other hand, offers a simpler optical configuration and demonstrates high tolerance to sample scattering but typically operates within the spectral range of 400-4000 cm-1. Conventional frequency-domain hSRS microscopy is widely employed in biological applications but falls short in detecting chemical bonds with a weaker vibrational energy. In this work, we extend the spectral coverage of picosecond spectral-focusing hSRS microscopy to below 100 cm-1. This frequency-domain low-wavenumber hSRS approach can measure the weaker vibrational energy from the sample and has a strong tolerance to sample scattering. By expanding spectral coverage to 100-4000 cm-1, this development enhances the capability of spectral-domain SRS microscopy for chemical imaging.
Collapse
Affiliation(s)
- Matthew G Clark
- Department of Chemistry, Purdue University; 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Karsten J Mohn
- Department of Chemistry, Purdue University; 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Bin Dong
- Department of Chemistry, Purdue University; 560 Oval Dr., West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research; 201 S University St., West Lafayette, Indiana 47907, United States
| | - Helen C Campbell
- Department of Chemistry, Purdue University; 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Chi Zhang
- Department of Chemistry, Purdue University; 560 Oval Dr., West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research; 201 S University St., West Lafayette, Indiana 47907, United States
- Immunology, and Infectious Disease, Purdue Institute of Inflammation, Immunology and Infectious Disease, 207 S Martin Jischke Dr., West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Dong B, Mahapatra S, Clark MG, Carlsen MS, Mohn KJ, Ma S, Brasseale KA, Crim G, Zhang C. Spatiotemporally Precise Optical Manipulation of Intracellular Molecular Activities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307342. [PMID: 38279563 PMCID: PMC10987104 DOI: 10.1002/advs.202307342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Controlling chemical processes in live cells is a challenging task. The spatial heterogeneity of biochemical reactions in cells is often overlooked by conventional means of incubating cells with desired chemicals. A comprehensive understanding of spatially diverse biochemical processes requires precise control over molecular activities at the subcellular level. Herein, a closed-loop optoelectronic control system is developed that allows the manipulation of biomolecular activities in live cells at high spatiotemporal precision. Chemical-selective fluorescence signals are utilized to command lasers that trigger specific chemical processes or control the activation of photoswitchable inhibitors at desired targets. This technology is fully compatible with laser scanning confocal fluorescence microscopes. The authors demonstrate selective interactions of a 405 nm laser with targeted organelles and simultaneous monitoring of cell responses by fluorescent protein signals. Notably, blue laser interaction with the endoplasmic reticulum leads to a more pronounced reduction in cytosolic green fluorescent protein signals in comparison to that with nuclei and lipid droplets. Moreover, when combined with a photoswitchable inhibitor, microtubule polymerization is selectively inhibited within the subcellular compartments. This technology enables subcellular spatiotemporal optical manipulation over chemical processes and drug activities, exclusively at desired targets, while minimizing undesired effects on non-targeted locations.
Collapse
Affiliation(s)
- Bin Dong
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Shivam Mahapatra
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Matthew G. Clark
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Mark S. Carlsen
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Karsten J. Mohn
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Seohee Ma
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Kent A. Brasseale
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Grace Crim
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
| | - Chi Zhang
- Department of ChemistryPurdue University560 Oval Dr.West LafayetteIN47907USA
- Purdue Center for Cancer Research201 S. University St.West LafayetteIN47907USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease207 S. Martin Jischke Dr.West LafayetteIN47907USA
| |
Collapse
|
8
|
Dong B, Everly RM, Mahapatra S, Carlsen MS, Ma S, Zhang C. Unleashing Precision and Freedom in Optical Manipulation: Software-Assisted Real-Time Precision Opto-Control of Intracellular Molecular Activities and Cell Functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579709. [PMID: 38405826 PMCID: PMC10888777 DOI: 10.1101/2024.02.09.579709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The traditional method in biological science to regulate cell functions often employs chemical interventions, which commonly lack precision in space and time. While optical manipulation offers superior spatial precision, existing technologies are constrained by limitations in flexibility, accuracy, and response time. Here, we present an adaptable and interactive optical manipulation platform that integrates laser scanning, chemical sensing, synchronized multi-laser control, adaptable target selection, flexible decision-making, and real-time monitoring of sample responses. This software-assisted real-time precision opto-control (S-RPOC) platform facilitates automatic target selection driven by optical signals while permitting user-defined manual delineation. It allows the treatment of mobile or stationary targets with varying laser dosages and wavelengths simultaneously at diffraction-limited spatial precision and optimal accuracy. Significantly, S-RPOC showcases versatile capabilities including adaptive photobleaching, comprehensive quantification of protein dynamics, selective organelle perturbation, control of cell division, and manipulation of individual cell behaviors within a population. With its unprecedented spatiotemporal precision and adaptable decision-making, S-RPOC holds the potential for extensive applications in biological science.
Collapse
|
9
|
Mahapatra S, Ma S, Dong B, Zhang C. Quantification of cellular phototoxicity of organelle stains by the dynamics of microtubule polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576021. [PMID: 38293099 PMCID: PMC10827188 DOI: 10.1101/2024.01.17.576021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Being able to quantify the phototoxicity of dyes and drugs in live cells allows biologists to better understand cell responses to exogenous stimuli during imaging. This capability further helps to design fluorescent labels with lower phototoxicity and drugs with better efficacy. Conventional ways to evaluate cellular phototoxicity rely on late-stage measurements of individual or different populations of cells. Here, we developed a quantitative method using intracellular microtubule polymerization as a rapid and sensitive marker to quantify early-stage phototoxicity. Implementing this method, we assessed the photosensitization induced by organelle dyes illuminated with different excitation wavelengths. Notably, fluorescent markers targeting mitochondria, nuclei, and endoplasmic reticulum exhibited diverse levels of phototoxicity. Furthermore, leveraging a real-time precision opto-control technology allowed us to evaluate the synergistic effect of light and dyes on specific organelles. Studies in hypoxia revealed enhanced phototoxicity of Mito-Tracker Red CMXRos that is not correlated with the generation of reactive oxygen species but a different deleterious pathway in low oxygen conditions. Teaser Microtubule dynamics in live cells allow quantification of cellular phototoxicity of fluorescent dyes in various conditions.
Collapse
|
10
|
Zhang J, Lin H, Xu J, Zhang M, Ge X, Zhang C, Huang WE, Cheng JX. High-throughput single-cell sorting by stimulated Raman-activated cell ejection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562526. [PMID: 37904930 PMCID: PMC10614813 DOI: 10.1101/2023.10.16.562526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Single-cell sorting is essential to explore cellular heterogeneity in biology and medicine. Recently developed Raman-activated cell sorting (RACS) circumvents the limitations of fluorescence-activated cell sorting, such as the cytotoxicity of labels. However, the sorting throughputs of all forms of RACS are limited by the intrinsically small cross-section of spontaneous Raman scattering. Here, we report a stimulated Raman-activated cell ejection (S-RACE) platform that enables high-throughput single-cell sorting based on high-resolution multi-channel stimulated Raman chemical imaging, in situ image decomposition, and laser-induced cell ejection. The performance of this platform was illustrated by sorting a mixture of 1 μm polymer beads, where 95% yield, 98% purity, and 14 events per second throughput were achieved. Notably, our platform allows live cell ejection, allowing for the growth of single colonies of bacteria and fungi after sorting. To further illustrate the chemical selectivity, lipid-rich Rhodotorula glutinis cells were successfully sorted from a mixture with Saccharomyces cerevisiae, confirmed by downstream quantitative PCR. Furthermore, by integrating a closed-loop feedback control circuit into the system, we realized real-time single-cell imaging and sorting, and applied this method to precisely eject regions of interest from a rat brain tissue section. The reported S-RACE platform opens exciting opportunities for a wide range of single-cell applications in biology and medicine.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Meng Zhang
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
11
|
Zhang C. Coherent Raman scattering microscopy of lipid droplets in cells and tissues. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2023; 54:988-1000. [PMID: 38076450 PMCID: PMC10707480 DOI: 10.1002/jrs.6540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/03/2023] [Indexed: 09/03/2024]
Abstract
Lipid droplets (LDs) play a key role as the hub for lipid metabolism to maintain cellular metabolic homeostasis. Understanding the functions and changes of LDs in different pathological conditions is crucial for identifying new markers for diagnosis and discovering new targets for treatment. In recent years, coherent Raman scattering (CRS) microscopy has been popularized for the imaging and quantification of LDs in live cells. Compared to spontaneous Raman scattering microscopy, CRS microscopy offers a much higher imaging speed while maintaining similar chemical information. Due to the high lipid density, LDs usually have strong CRS signals and therefore are the most widely studied organelle in the CRS field. In this review, we discuss recent achievements using CRS to study the quantity, distribution, composition, and dynamics of LDs in various systems.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Chemistry, Purdue Center for Cancer Research, Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University, West Lafayette, IN
| |
Collapse
|
12
|
Clark MG, Ma S, Mahapatra S, Mohn KJ, Zhang C. Chemical-imaging-guided optical manipulation of biomolecules. Front Chem 2023; 11:1198670. [PMID: 37214479 PMCID: PMC10196011 DOI: 10.3389/fchem.2023.1198670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Chemical imaging via advanced optical microscopy technologies has revealed remarkable details of biomolecules in living specimens. However, the ways to control chemical processes in biological samples remain preliminary. The lack of appropriate methods to spatially regulate chemical reactions in live cells in real-time prevents investigation of site-specific molecular behaviors and biological functions. Chemical- and site-specific control of biomolecules requires the detection of chemicals with high specificity and spatially precise modulation of chemical reactions. Laser-scanning optical microscopes offer great platforms for high-speed chemical detection. A closed-loop feedback control system, when paired with a laser scanning microscope, allows real-time precision opto-control (RPOC) of chemical processes for dynamic molecular targets in live cells. In this perspective, we briefly review recent advancements in chemical imaging based on laser scanning microscopy, summarize methods developed for precise optical manipulation, and highlight a recently developed RPOC technology. Furthermore, we discuss future directions of precision opto-control of biomolecules.
Collapse
Affiliation(s)
| | - Seohee Ma
- Department of Chemistry, West Lafayette, IN, United States
| | | | | | - Chi Zhang
- Department of Chemistry, West Lafayette, IN, United States
- Purdue Center for Cancer Research, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|