1
|
Wang Y, Xu L, Ling L, Yao M, Shi S, Yu C, Li Y, Shen J, Jiang H, Xie C. Unraveling the CDK9/PP2A/ERK Network in Transcriptional Pause Release and Complement Activation in KRAS-mutant Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404926. [PMID: 39254172 PMCID: PMC11538672 DOI: 10.1002/advs.202404926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/15/2024] [Indexed: 09/11/2024]
Abstract
Selective inhibition of the transcription elongation factor (P-TEFb) complex represents a promising approach in cancer therapy, yet CDK9 inhibitors (CDK9i) are currently limited primarily to certain hematological malignancies. Herein, while initial responses to CDK9-targeted therapies are observed in vitro across various KRAS-mutant cancer types, their efficacy is far from satisfactory in nude mouse xenograft models. Mechanistically, CDK9 inhibition leads to compensatory activation of ERK-MYC signaling, accompanied by the recovery of proto-oncogenes, upregulation of immediate early genes (IEGs), stimulation of the complement C1r-C3-C3a cascade, and induction of tumor immunosuppression. The "paradoxical" regulation of PP2Ac activity involving the CDK9/Src interplay contributes to ERK phosphorylation and pause-release of RNA polymerase II (Pol II). Co-targeting of CDK9 and KRAS/MAPK signaling pathways eliminates ERK-MYC activation and prevents feedback activation mediated by receptor tyrosine kinases, leading to more effective control of KRAS-mutant cancers and overcoming KRASi resistance. Moreover, modulating the tumor microenvironment (TME) by complement system intervention enhances the response to CDK9i and potently suppresses tumor growth. Overall, the preclinical investigations establish a robust framework for conducting clinical trials employing KRASi/SOS1i/MEKi or immunomodifiers in combination with CDK9i to simultaneously target cancer cells and their crosstalk with the TME, thereby yielding improved responses in KRAS-mutant patients.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lijun Ling
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- Lingang LaboratoryShanghai200031P. R. China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| | - Chengcheng Yu
- Lingang LaboratoryShanghai200031P. R. China
- Drug Discovery and Development CenterShanghai Institute of Materia MedicaChinese Academy of Sciences555 Zuchongzhi RoadShanghai201203P. R. China
| | | | - Jie Shen
- Department of PharmacyThe SATCM Third Grade Laboratory of Traditional Chinese Medicine PreparationsShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghai201203P. R. China
| | - Hualiang Jiang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
- Drug Discovery and Development CenterShanghai Institute of Materia MedicaChinese Academy of Sciences555 Zuchongzhi RoadShanghai201203P. R. China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech University393 Middle Huaxia RoadShanghai201210P. R. China
- Lingang LaboratoryShanghai200031P. R. China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
2
|
Sun P, Kraus CN, Zhao W, Xu J, Suh S, Nguyen Q, Jia Y, Nair A, Oakes M, Tinoco R, Shiu J, Sun B, Elsensohn A, Atwood SX, Nie Q, Dai X. Single-cell and spatial transcriptomics of vulvar lichen sclerosus reveal multi-compartmental alterations in gene expression and signaling cross-talk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607986. [PMID: 39211101 PMCID: PMC11361165 DOI: 10.1101/2024.08.14.607986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vulvar diseases are a critical yet often neglected area of women's health, profoundly affecting patients' quality of life and frequently resulting in long-term physical and psychological challenges. Lichen sclerosus (LS) is a chronic inflammatory skin disorder that predominantly affects the vulva, leading to severe itching, pain, scarring, and an increased risk of malignancy. Despite its profound impact on affected individuals, the molecular pathogenesis of vulvar LS (VLS) is not well understood, hindering the development of FDA-approved therapies. Here, we utilize single-cell and spatial transcriptomics to analyze lesional and non-lesional skin from VLS patients, as well as healthy control vulvar skin. Our findings demonstrate histologic, cellular, and molecular heterogeneities within VLS, yet highlight unifying molecular changes across keratinocytes, fibroblasts, immune cells, and melanocytes in lesional skin. They reveal cellular stress and damage in fibroblasts and keratinocytes, enhanced T cell activation and cytotoxicity, aberrant cell-cell signaling, and increased activation of the IFN, JAK/STAT, and p53 pathways in specific cell types. Using both monolayer and organotypic culture models, we also demonstrate that knockdown of select genes, which are downregulated in VLS lesional keratinocytes, partially recapitulates VLS-like stress-associated changes. Collectively, these data provide novel insights into the pathogenesis of VLS, identifying potential biomarkers and therapeutic targets for future research.
Collapse
|
3
|
Ho PJ, Kweon J, Blumensaadt LA, Neely AE, Kalika E, Leon DB, Oh S, Stringer CWP, Lloyd SM, Ren Z, Bao X. Multi-omics integration identifies cell-state-specific repression by PBRM1-PIAS1 cooperation. CELL GENOMICS 2024; 4:100471. [PMID: 38190100 PMCID: PMC10794847 DOI: 10.1016/j.xgen.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
PBRM1 is frequently mutated in cancers of epithelial origin. How PBRM1 regulates normal epithelial homeostasis, prior to cancer initiation, remains unclear. Here, we show that PBRM1's gene regulatory roles differ drastically between cell states, leveraging human skin epithelium (epidermis) as a research platform. In progenitors, PBRM1 predominantly functions to repress terminal differentiation to sustain progenitors' regenerative potential; in the differentiation state, however, PBRM1 switches toward an activator. Between these two cell states, PBRM1 retains its genomic binding but associates with differential interacting proteins. Our targeted screen identified the E3 SUMO ligase PIAS1 as a key interactor. PIAS1 co-localizes with PBRM1 on chromatin to directly repress differentiation genes in progenitors, and PIAS1's chromatin binding drastically diminishes in differentiation. Furthermore, SUMOylation contributes to PBRM1's repressive function in progenitor maintenance. Thus, our findings highlight PBRM1's cell-state-specific regulatory roles influenced by its protein interactome despite its stable chromatin binding.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Elizabeth Kalika
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Daniel B Leon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sanghyon Oh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Cooper W P Stringer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Dermatology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Lv X, Murphy K, Murphy Z, Getman M, Rahman N, Nakamura Y, Blanc L, Gallagher PG, Palis J, Mohandas N, Steiner LA. HEXIM1 is an essential transcription regulator during human erythropoiesis. Blood 2023; 142:2198-2215. [PMID: 37738561 PMCID: PMC10733840 DOI: 10.1182/blood.2022019495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023] Open
Abstract
ABSTRACT Regulation of RNA polymerase II (RNAPII) activity is an essential process that governs gene expression; however, its contribution to the fundamental process of erythropoiesis remains unclear. hexamethylene bis-acetamide inducible 1 (HEXIM1) regulates RNAPII activity by controlling the location and activity of positive transcription factor β. We identified a key role for HEXIM1 in controlling erythroid gene expression and function, with overexpression of HEXIM1 promoting erythroid proliferation and fetal globin expression. HEXIM1 regulated erythroid proliferation by enforcing RNAPII pausing at cell cycle check point genes and increasing RNAPII occupancy at genes that promote cycle progression. Genome-wide profiling of HEXIM1 revealed that it was increased at both repressed and activated genes. Surprisingly, there were also genome-wide changes in the distribution of GATA-binding factor 1 (GATA1) and RNAPII. The most dramatic changes occurred at the β-globin loci, where there was loss of RNAPII and GATA1 at β-globin and gain of these factors at γ-globin. This resulted in increased expression of fetal globin, and BGLT3, a long noncoding RNA in the β-globin locus that regulates fetal globin expression. GATA1 was a key determinant of the ability of HEXIM1 to repress or activate gene expression. Genes that gained both HEXIM1 and GATA1 had increased RNAPII and increased gene expression, whereas genes that gained HEXIM1 but lost GATA1 had an increase in RNAPII pausing and decreased expression. Together, our findings reveal a central role for universal transcription machinery in regulating key aspects of erythropoiesis, including cell cycle progression and fetal gene expression, which could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiurui Lv
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Kristin Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Zachary Murphy
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Michael Getman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Nabil Rahman
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Yukio Nakamura
- Rikagaku Kenkyūjyo (RIKEN) BioResource Research Center, Tsukuba Campus, Ibaraki, Japan
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY
| | | | - James Palis
- Center for Child Health Research, University of Rochester, Rochester, NY
| | - Narla Mohandas
- Red Cell Physiology Laboratory, Lindsey F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Laurie A. Steiner
- Center for Child Health Research, University of Rochester, Rochester, NY
- Center for RNA Biology, University of Rochester, Rochester, NY
| |
Collapse
|
5
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Feucherolles M, Le W, Bour J, Jacques C, Duplan H, Frache G. A Comprehensive Comparison of Tissue Processing Methods for High-Quality MALDI Imaging of Lipids in Reconstructed Human Epidermis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2469-2480. [PMID: 37843012 PMCID: PMC10623569 DOI: 10.1021/jasms.3c00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an important tool for skin analysis, as it allows the simultaneous detection and localization of diverse molecular species within a sample. The use of in vivo and ex vivo human skin models is costly and presents ethical issues; therefore, reconstructed human epidermis (RHE) models, which mimic the upper part of native human skin, represent a suitable alternative to investigate adverse effects of chemicals applied to the skin. However, there are few publications investigating the feasibility of using MALDI MSI on RHE models. Therefore, the aim of this study was to investigate the effect of sample preparation techniques, i.e., substrate, sample thickness, washing, and matrix recrystallization, on the quality of MALDI MSI for lipids analysis of the SkinEthic RHE model. Images were generated using an atmospheric pressure MALDI source coupled to a high-resolution mass spectrometer with a pixel size of 5 μm. Masses detected in a defined region of interest were analyzed and annotated using the LipostarMSI platform. The results indicated that the combination of (1) coated metallic substrates, such as APTES-coated stainless-steel plates, (2) tissue sections of 6 μm thickness, and (3) aqueous washing before HCCA matrix spraying (without recrystallization), resulted in images with a significant signal intensity as well as numerous m/z values. This refined methodology using AP-MALDI coupled to a high-resolution mass spectrometer should improve the current sample preparation workflow to evaluate changes in skin composition after application of dermatocosmetics.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - William Le
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Jérôme Bour
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Carine Jacques
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Hélène Duplan
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| |
Collapse
|
7
|
Neely AE, Zhang Y, Blumensaadt LA, Mao H, Brenner B, Sun C, Zhang HF, Bao X. Nucleoporin downregulation modulates progenitor differentiation independent of nuclear pore numbers. Commun Biol 2023; 6:1033. [PMID: 37853046 PMCID: PMC10584948 DOI: 10.1038/s42003-023-05398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
Nucleoporins (NUPs) comprise nuclear pore complexes, gateways for nucleocytoplasmic transport. As primary human keratinocytes switch from the progenitor state towards differentiation, most NUPs are strongly downregulated, with NUP93 being the most downregulated NUP in this process. To determine if this NUP downregulation is accompanied by a reduction in nuclear pore numbers, we leveraged Stochastic Optical Reconstruction Microscopy. No significant changes in nuclear pore numbers were detected using three independent NUP antibodies; however, NUP reduction in other subcellular compartments such as the cytoplasm was identified. To investigate how NUP reduction influences keratinocyte differentiation, we knocked down NUP93 in keratinocytes in the progenitor-state culture condition. NUP93 knockdown diminished keratinocytes' clonogenicity and epidermal regenerative capacity, without drastically affecting nuclear pore numbers or permeability. Using transcriptome profiling, we identified that NUP93 knockdown induces differentiation genes related to both mechanical and immune barrier functions, including the activation of known NF-κB target genes. Consistently, keratinocytes with NUP93 knockdown exhibited increased nuclear localization of the NF-κB p65/p50 transcription factors, and increased NF-κB reporter activity. Taken together, these findings highlight the gene regulatory roles contributed by differential NUP expression levels in keratinocyte differentiation, independent of nuclear pore numbers.
Collapse
Affiliation(s)
- Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Molecular Analytics and Photonics (MAP) Lab, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Hongjing Mao
- Molecular Analytics and Photonics (MAP) Lab, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC, 27606, USA
| | - Benjamin Brenner
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Neely AE, Blumensaadt LA, Ho PJ, Lloyd SM, Kweon J, Ren Z, Bao X. NUP98 and RAE1 sustain progenitor function through HDAC-dependent chromatin targeting to escape from nucleolar localization. Commun Biol 2023; 6:664. [PMID: 37353594 PMCID: PMC10290086 DOI: 10.1038/s42003-023-05043-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Self-renewing somatic tissues rely on progenitors to support the continuous tissue regeneration. The gene regulatory network maintaining progenitor function remains incompletely understood. Here we show that NUP98 and RAE1 are highly expressed in epidermal progenitors, forming a separate complex in the nucleoplasm. Reduction of NUP98 or RAE1 abolishes progenitors' regenerative capacity, inhibiting proliferation and inducing premature terminal differentiation. Mechanistically, NUP98 binds on chromatin near the transcription start sites of key epigenetic regulators (such as DNMT1, UHRF1 and EZH2) and sustains their expression in progenitors. NUP98's chromatin binding sites are co-occupied by HDAC1. HDAC inhibition diminishes NUP98's chromatin binding and dysregulates NUP98 and RAE1's target gene expression. Interestingly, HDAC inhibition further induces NUP98 and RAE1 to localize interdependently to the nucleolus. These findings identified a pathway in progenitor maintenance, where HDAC activity directs the high levels of NUP98 and RAE1 to directly control key epigenetic regulators, escaping from nucleolar aggregation.
Collapse
Affiliation(s)
- Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- Department of Dermatology, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute for Epigenetics, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Non-Healing Perianal Fistulas: A Clinical Model of Tissue Senescence Impairing Both Tissue Fibrosis and Regenerative Potential. Biomedicines 2023; 11:biomedicines11020537. [PMID: 36831073 PMCID: PMC9953590 DOI: 10.3390/biomedicines11020537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Senescent cells and fibrosis are important components that impact the regenerative capacity of skin, particularly when considering chronic non-healing wounds. Anoderm and perianal fistulas in the setting of Crohn's disease are clinically pathophysiological extremes with consequently different healing processes which impact treatment modalities. This study describes the implications of potential senescence reversing techniques including autologous fat grafting and pharmacologic and immunomodulating agents. Given these findings, the authors propose a future direction of study involving exosomes loaded with senolytics as a method for potentially improving chronic wound healing. In conclusion, this manuscript explores the diversity of skin healing and healing outcomes which supports the future investigation of senotherapeutic agents promoting regenerative processes for non-healing wounds.
Collapse
|