1
|
An K, Xu M, Mucchietto A, Kim C, Moon KW, Hwang C, Grundler D. Emergent coherent modes in nonlinear magnonic waveguides detected at ultrahigh frequency resolution. Nat Commun 2024; 15:7302. [PMID: 39181876 PMCID: PMC11344808 DOI: 10.1038/s41467-024-51483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Nonlinearity of dynamic systems plays a key role in neuromorphic computing, which is expected to reduce the ever-increasing power consumption of machine learning and artificial intelligence applications. For spin waves (magnons), nonlinearity combined with phase coherence is the basis of phenomena like Bose-Einstein condensation, frequency combs, and pattern recognition in neuromorphic computing. Yet, the broadband electrical detection of these phenomena with high-frequency resolution remains a challenge. Here, we demonstrate the generation and detection of phase-coherent nonlinear magnons in an all-electrical GHz probe station based on coplanar waveguides connected to a vector network analyzer which we operate in a frequency-offset mode. Making use of an unprecedented frequency resolution, we resolve the nonlocal emergence of a fine structure of propagating nonlinear magnons, which sensitively depends on both power and a magnetic field. These magnons are shown to maintain coherency with the microwave source while propagating over macroscopic distances. We propose a multi-band four-magnon scattering scheme that is in agreement with the field-dependent characteristics of coherent nonlocal signals in the nonlinear excitation regime. Our findings are key to enable the seamless integration of nonlinear magnon processes into high-speed microwave electronics and to advance phase-encoded information processing in magnonic neuronal networks.
Collapse
Affiliation(s)
- K An
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - M Xu
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - A Mucchietto
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - C Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - K-W Moon
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - C Hwang
- Quantum Technology Institute, Korea Research Institute of Standards and Science, Daejeon, 34113, Republic of Korea
| | - D Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
- Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| |
Collapse
|
2
|
Nikolaev KO, Lake SR, Schmidt G, Demokritov SO, Demidov VE. Resonant generation of propagating second-harmonic spin waves in nano-waveguides. Nat Commun 2024; 15:1827. [PMID: 38418458 PMCID: PMC10902293 DOI: 10.1038/s41467-024-46108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Generation of second-harmonic waves is one of the universal nonlinear phenomena that have found numerous technical applications in many modern technologies, in particular, in photonics. This phenomenon also has great potential in the field of magnonics, which considers the use of spin waves in magnetic nanostructures to implement wave-based signal processing and computing. However, due to the strong frequency dependence of the phase velocity of spin waves, resonant phase-matched generation of second-harmonic spin waves has not yet been achieved in practice. Here, we show experimentally that such a process can be realized using a combination of different modes of nano-sized spin-wave waveguides based on low-damping magnetic insulators. We demonstrate that our approach enables efficient spatially-extended energy transfer between interacting waves, which can be controlled by the intensity of the initial wave and the static magnetic field.
Collapse
Affiliation(s)
- K O Nikolaev
- Institute of Applied Physics, University of Muenster, 48149, Muenster, Germany
| | - S R Lake
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - G Schmidt
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
- Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle, Germany
| | - S O Demokritov
- Institute of Applied Physics, University of Muenster, 48149, Muenster, Germany.
| | - V E Demidov
- Institute of Applied Physics, University of Muenster, 48149, Muenster, Germany
| |
Collapse
|
3
|
Yanilkin I, Gumarov A, Golovchanskiy I, Gabbasov B, Yusupov R, Tagirov L. Engineering the Exchange Spin Waves in Graded Thin Ferromagnetic Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4361. [PMID: 36558214 PMCID: PMC9785029 DOI: 10.3390/nano12244361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The results of experimental and theoretical studies of standing spin waves in a series of epitaxial films of the ferromagnetic Pd1−xFex alloy (0.02 < x < 0.11) with different distributions of the magnetic properties across the thickness are presented. Films with linear and stepwise, as well as more complex Lorentzian, sine and cosine profiles of iron concentration in the alloy, and thicknesses from 20 to 400 nm are considered. A crucial influence of the magnetic properties profile on the spectrum of spin wave resonances is demonstrated. A capability of engineering the standing spin waves in graded ferromagnetic films for applications in magnonics is discussed.
Collapse
Affiliation(s)
- Igor Yanilkin
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
- FRC Kazan Scientific Centre of RAS, Zavoisky Physical-Technical Institute, 420029 Kazan, Russia
| | - Amir Gumarov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
- FRC Kazan Scientific Centre of RAS, Zavoisky Physical-Technical Institute, 420029 Kazan, Russia
| | - Igor Golovchanskiy
- National University of Science and Technology MISiS, 119049 Moscow, Russia
- Advanced Mesoscience and Nanotechnology Centre, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Bulat Gabbasov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
- FRC Kazan Scientific Centre of RAS, Zavoisky Physical-Technical Institute, 420029 Kazan, Russia
| | - Roman Yusupov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Lenar Tagirov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
- FRC Kazan Scientific Centre of RAS, Zavoisky Physical-Technical Institute, 420029 Kazan, Russia
| |
Collapse
|