1
|
Scholl B. Visual pursuit: Coordinated eye and head movements guide navigation over fixation. Curr Biol 2025; 35:R187-R189. [PMID: 40068615 DOI: 10.1016/j.cub.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Predators track prey while navigating complex environments. A new study in freely moving ferrets reveals that, during visual pursuit, saccadic eye movements optimize optic flow patterns, rather than track targets.
Collapse
Affiliation(s)
- Benjamin Scholl
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Lapsansky AB, Kreyenmeier P, Spering M, Wylie DR, Altshuler DL. Hummingbirds use compensatory eye movements to stabilize both rotational and translational visual motion. Proc Biol Sci 2025; 292:20242015. [PMID: 39809307 PMCID: PMC11732407 DOI: 10.1098/rspb.2024.2015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
To maintain stable vision, behaving animals make compensatory eye movements in response to image slip, a reflex known as the optokinetic response (OKR). Although OKR has been studied in several avian species, eye movements during flight are expected to be minimal. This is because vertebrates with laterally placed eyes typically show weak OKR to nasal-to-temporal motion (NT), which simulates typical forward locomotion, compared with temporal-to-nasal motion (TN), which simulates atypical backward locomotion. This OKR asymmetry is also reflected in the pretectum, wherein neurons sensitive to global visual motion also exhibit a TN bias. Hummingbirds, however, stabilize visual motion in all directions through whole-body movements and are unique among vertebrates in that they lack a pretectal bias. We therefore predicted that OKR in hummingbirds would be symmetrical. We measured OKR in restrained hummingbirds by presenting gratings drifting across a range of speeds. OKR in hummingbirds was asymmetrical, although the direction of asymmetry varied with stimulus speed. Hummingbirds moved their eyes largely independently of one another. Consistent with weak eye-to-eye coupling, hummingbirds also exhibited disjunctive OKR to visual motion simulating forward and backward translation. This unexpected oculomotor behaviour, previously unexplored in birds, suggests a potential role for compensatory eye movements during flight.
Collapse
Affiliation(s)
- Anthony B. Lapsansky
- Salish Sea Research Center, Northwest Indian College, Bellingham, WA98226, USA
- Department of Zoology, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Philipp Kreyenmeier
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British ColumbiaV5Z 3N9, Canada
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, British ColumbiaV5Z 3N9, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Douglas R. Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AlbertaT6G 2R3, Canada
| | - Douglas L. Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| |
Collapse
|
3
|
Sukkar M, Khatirnamani A, Wibble T. Visually induced vertical vergence as a motion processing biomarker associated with postural instability. Neuroscience 2024; 555:106-115. [PMID: 39053671 DOI: 10.1016/j.neuroscience.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The present study explored visually induced vertical vergence (VIVV) as non-specific motion processing response. Healthy participants (7 male, mean age 28.57 ± 2.30; 9 female, mean age 27.67 ± 3.65) were exposed to optokinetic stimuli in an HTC VIVE virtual reality headset while VIVV, pupil-size, and postural sway was recorded. The methodology was shown to produce VIVV in the roll plane at 30 deg/s. Subsequent trials consisted of 40 s optokinetic motion in yaw, pitch, and roll directions at 60 deg/s, and radial optic flow; optokinetic directions were inverted after 20 s of motion. Median VIVV amplitude changes were normalized to the clockwise roll rotation, analysed, and correlated with changes in pupil-size and body sway. VIVV, pupil-size, and body sway were all affected by changes in optokinetic direction. Post-hoc analyses showed significant VIVV responses during optokinetic yaw and pitch rotations, as well as during radial optic flow stimulations. VIVV magnitudes were universally correlated with pupil-size and body sway. In conclusion, VIVV was expressed in all tested dimensions and may consequently serve as a visual motion processing biomarker. Failing to support binocularity while responding to optokinetic directionality, VIVV may reflect an eye-movement response associated with increased postural instability and stress, similar to a dorsal light reflex.
Collapse
Affiliation(s)
- Maiar Sukkar
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Amirehsan Khatirnamani
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Wibble
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Jiménez-López C, Rivas-Ramírez P, Barandela M, Núñez-González C, Megías M, Pérez-Fernández J. Direct retino-iridal projections and intrinsic iris contraction mediate the pupillary light reflex in early vertebrates. Commun Biol 2024; 7:993. [PMID: 39143195 PMCID: PMC11324758 DOI: 10.1038/s42003-024-06699-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
The pupillary light reflex (PLR) adapts the amount of light reaching the retina, protecting it and improving image formation. Two PLR mechanisms have been described in vertebrates. First, the pretectum receives retinal inputs and projects to the Edinger-Westphal nucleus (EWN), which targets the ciliary ganglion through the oculomotor nerve (nIII). Postganglionic fibers enter the eye-globe, traveling to the iris sphincter muscle. Additionally, some vertebrates exhibit an iris-intrinsic PLR mechanism mediated by sphincter muscle cells that express melanopsin inducing muscle contraction. Given the high degree of conservation of the lamprey visual system, we investigated the mechanisms underlying the PLR to shed light onto their evolutionary origins. Recently, a PLR mediated by melanopsin was demonstrated in lampreys, suggested to be brain mediated. Remarkably, we found that PLR is instead mediated by direct retino-iridal cholinergic projections. This retina-mediated PLR acts synergistically with an iris-intrinsic mechanism that, as in other vertebrates, is mediated by melanopsin and has contribution of gap junctions between muscle fibers. In contrast, we show that lampreys lack the brain-mediated PLR. Our results suggest that two eye-intrinsic PLR mechanisms were present in early vertebrate evolution, whereas the brain-mediated PLR has a more recent origin.
Collapse
Affiliation(s)
- Cecilia Jiménez-López
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
| | - Paula Rivas-Ramírez
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
| | - Marta Barandela
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
| | - Carmen Núñez-González
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
| | - Manuel Megías
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía-IBIV, Grupo Neurolam, Universidade de Vigo, 36310, Vigo, Spain
| | - Juan Pérez-Fernández
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía-IBIV, Grupo Neurolam, Universidade de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
5
|
Wibble T, Pansell T. Human proprioceptive gaze stabilization during passive body rotations underneath a fixed head. Sci Rep 2024; 14:17355. [PMID: 39075206 PMCID: PMC11286784 DOI: 10.1038/s41598-024-68116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
The present study explored the presence of torsional gaze-stabilization to proprioceptive neck activation in humans. Thirteen healthy subjects (6 female, mean age 25) were exposed to passive body rotations while maintaining a head-fixed, gravitationally upright, position. Participants were seated in a mechanical sled, their heads placed in a chin rest embedded in a wooden beam while wearing an eye tracker attached to the beam using strong rubber bands to ensure head stability. The body was passively rotated underneath the head both in darkness and while viewing a projected visual scene. Static torsional gaze positions were compared between the baseline position prior to the stimulation, and immediately after the final body tilt had been reached. Results showed that passive neck flexion produced ocular torsion when combined with a visual background. The eyes exhibited rotations in the opposite direction of the neck's extension, matching a hypothetical head tilt in the same direction as the sled. This corresponded with a predicted head rotation aimed at straightening the head in relation to the body. No such response was seen during trials in darkness. Altogether, these findings suggest that proprioception may produce a predictive gaze-stabilizing response in humans.
Collapse
Affiliation(s)
- Tobias Wibble
- Division of Eye and Vision, Department of Clinical Neuroscience, Marianne Bernadotte Centrum, St. Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Tony Pansell
- Division of Eye and Vision, Department of Clinical Neuroscience, Marianne Bernadotte Centrum, St. Erik's Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Wibble T. Temporal dynamics of ocular torsion and vertical vergence during visual, vestibular, and visuovestibular rotations. Exp Brain Res 2024; 242:1469-1479. [PMID: 38695940 PMCID: PMC11108960 DOI: 10.1007/s00221-024-06842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Ocular torsion and vertical divergence reflect the brain's sensorimotor integration of motion through the vestibulo-ocular reflex (VOR) and the optokinetic reflex (OKR) to roll rotations. Torsion and vergence however express different response patterns depending on several motion variables, but research on their temporal dynamics remains limited. This study investigated the onset times of ocular torsion (OT) and vertical vergence (VV) during visual, vestibular, and visuovestibular motion, as well as their relative decay rates following prolonged optokinetic stimulations. Temporal characteristics were retrieved from three separate investigations where the level of visual clutter and acceleration were controlled. Video eye-tracking was used to retrieve the eye-movement parameters from a total of 41 healthy participants across all trials. Ocular torsion consistently initiated earlier than vertical vergence, particularly evident under intensified visual information density, and higher clutter levels were associated with more balanced decay rates. Additionally, stimulation modality and accelerations affected the onsets of both eye movements, with visuovestibular motion triggering earlier responses compared to vestibular motion, and increased accelerations leading to earlier onsets for both movements. The present study showed that joint visuovestibular responses produced more rapid onsets, indicating a synergetic sensorimotor process. It also showed that visual content acted as a fusional force during the decay period, and imposed greater influence over the torsional onset compared to vergence. Acceleration, by contrast, did not affect the temporal relationship between the two eye movements. Altogether, these findings provide insights into the sensorimotor integration of the vestibulo-ocular and optokinetic reflex arcs.
Collapse
Affiliation(s)
- Tobias Wibble
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centre, Karolinska Institutet, Stockholm, Sweden.
- St Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
8
|
Ono S, Yoshimura Y, Shinkai R, Kizuka T. Properties of Gaze Strategies Based on Eye-Head Coordination in a Ball-Catching Task. Vision (Basel) 2024; 8:20. [PMID: 38651441 PMCID: PMC11036236 DOI: 10.3390/vision8020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Visual motion information plays an important role in the control of movements in sports. Skilled ball players are thought to acquire accurate visual information by using an effective visual search strategy with eye and head movements. However, differences in catching ability and gaze movements due to sports experience and expertise have not been clarified. Therefore, the purpose of this study was to determine the characteristics of gaze strategies based on eye and head movements during a ball-catching task in athlete and novice groups. Participants were softball and tennis players and college students who were not experienced in ball sports (novice). They performed a one-handed catching task using a tennis ball-shooting machine, which was placed at 9 m in front of the participants, and two conditions were set depending on the height of the ball trajectory (high and low conditions). Their head and eye velocities were detected using a gyroscope and electrooculography (EOG) during the task. Our results showed that the upward head velocity and the downward eye velocity were lower in the softball group than in the tennis and novice groups. When the head was pitched upward, the downward eye velocity was induced from the vestibulo-ocular reflex (VOR) during ball catching. Therefore, it is suggested that skilled ball players have relatively stable head and eye movements, which may lead to an effective gaze strategy. An advantage of the stationary gaze in the softball group could be to acquire visual information about the surroundings other than the ball.
Collapse
Affiliation(s)
- Seiji Ono
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Ibaraki, Japan (T.K.)
| | - Yusei Yoshimura
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Ibaraki, Japan (T.K.)
| | - Ryosuke Shinkai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8574, Ibaraki, Japan
| | - Tomohiro Kizuka
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Ibaraki, Japan (T.K.)
| |
Collapse
|
9
|
Frattini D, Rosén N, Wibble T. A Proposed Mechanism for Visual Vertigo: Post-Concussion Patients Have Higher Gain From Visual Input Into Subcortical Gaze Stabilization. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 38607620 PMCID: PMC11018265 DOI: 10.1167/iovs.65.4.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Purpose Post-concussion syndrome (PCS) is commonly associated with dizziness and visual motion sensitivity. This case-control study set out to explore altered motion processing in PCS by measuring gaze stabilization as a reflection of the capacity of the brain to integrate motion, and it aimed to uncover mechanisms of injury where invasive subcortical recordings are not feasible. Methods A total of 554 eye movements were analyzed in 10 PCS patients and nine healthy controls across 171 trials. Optokinetic and vestibulo-ocular reflexes were recorded using a head-mounted eye tracker while participants were exposed to visual, vestibular, and visuo-vestibular motion stimulations in the roll plane. Torsional and vergence eye movements were analyzed in terms of slow-phase velocities, gain, nystagmus frequency, and sensory-specific contributions toward gaze stabilization. Results Participants expressed eye-movement responses consistent with expected gaze stabilization; slow phases were fastest for visuo-vestibular trials and slowest for visual stimulations (P < 0.001) and increased with stimulus acceleration (P < 0.001). Concussed patients demonstrated increased gain from visual input to gaze stabilization (P = 0.005), faster slow phases (P = 0.013), earlier nystagmus beats (P = 0.003), and higher relative visual influence over the gaze-stabilizing response (P = 0.001), presenting robust effect sizes despite the limited population size. Conclusions The enhanced neural responsiveness to visual motion in PCS, combined with semi-intact visuo-vestibular integration, presented a subcortical hierarchy for altered gaze stabilization. Drawing on comparable animal trials, findings suggest that concussed patients may suffer from diffuse injuries to inhibiting pathways for optokinetic information, likely early in the visuo-vestibular hierarchy of sensorimotor integration. These findings offer context for common but elusive symptoms, presenting a neurological explanation for motion sensitivity and visual vertigo in PCS.
Collapse
Affiliation(s)
- Davide Frattini
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Rosén
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Wibble
- Department of Clinical Neuroscience, Division of Eye and Vision, Marianne Bernadotte Centrum, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 PMCID: PMC11786961 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
11
|
Montgomery JC. Roles for cerebellum and subsumption architecture in central pattern generation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:315-324. [PMID: 37130955 PMCID: PMC10994996 DOI: 10.1007/s00359-023-01634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Within vertebrates, central pattern generators drive rhythmical behaviours, such as locomotion and ventilation. Their pattern generation is also influenced by sensory input and various forms of neuromodulation. These capabilities arose early in vertebrate evolution, preceding the evolution of the cerebellum in jawed vertebrates. This later evolution of the cerebellum is suggestive of subsumption architecture that adds functionality to a pre-existing network. From a central-pattern-generator perspective, what additional functionality might the cerebellum provide? The suggestion is that the adaptive filter capabilities of the cerebellum may be able to use error learning to appropriately repurpose pattern output. Examples may include head and eye stabilization during locomotion, song learning, and context-dependent alternation between learnt motor-control sequences.
Collapse
Affiliation(s)
- John C Montgomery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Schenberg L, Palou A, Simon F, Bonnard T, Barton CE, Fricker D, Tagliabue M, Llorens J, Beraneck M. Multisensory gaze stabilization in response to subchronic alteration of vestibular type I hair cells. eLife 2023; 12:RP88819. [PMID: 38019267 PMCID: PMC10686621 DOI: 10.7554/elife.88819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
The functional complementarity of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) allows for optimal combined gaze stabilization responses (CGR) in light. While sensory substitution has been reported following complete vestibular loss, the capacity of the central vestibular system to compensate for partial peripheral vestibular loss remains to be determined. Here, we first demonstrate the efficacy of a 6-week subchronic ototoxic protocol in inducing transient and partial vestibular loss which equally affects the canal- and otolith-dependent VORs. Immunostaining of hair cells in the vestibular sensory epithelia revealed that organ-specific alteration of type I, but not type II, hair cells correlates with functional impairments. The decrease in VOR performance is paralleled with an increase in the gain of the OKR occurring in a specific range of frequencies where VOR normally dominates gaze stabilization, compatible with a sensory substitution process. Comparison of unimodal OKR or VOR versus bimodal CGR revealed that visuo-vestibular interactions remain reduced despite a significant recovery in the VOR. Modeling and sweep-based analysis revealed that the differential capacity to optimally combine OKR and VOR correlates with the reproducibility of the VOR responses. Overall, these results shed light on the multisensory reweighting occurring in pathologies with fluctuating peripheral vestibular malfunction.
Collapse
Affiliation(s)
- Louise Schenberg
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Aïda Palou
- Departament de Ciències Fisiològiques, Universitat de BarcelonaBarcelonaSpain
- Institut de Neurociènces, Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)l’Hospitalet de LlobregatSpain
| | - François Simon
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
- Department of Paediatric Otolaryngology, Hôpital Necker-Enfants MaladesParisFrance
| | - Tess Bonnard
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Charles-Elliot Barton
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Desdemona Fricker
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Michele Tagliabue
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de BarcelonaBarcelonaSpain
- Institut de Neurociènces, Universitat de BarcelonaBarcelonaSpain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)l’Hospitalet de LlobregatSpain
| | - Mathieu Beraneck
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition CenterParisFrance
| |
Collapse
|
13
|
Tanaka R, Zhou B, Agrochao M, Badwan BA, Au B, Matos NCB, Clark DA. Neural mechanisms to incorporate visual counterevidence in self-movement estimation. Curr Biol 2023; 33:4960-4979.e7. [PMID: 37918398 PMCID: PMC10848174 DOI: 10.1016/j.cub.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
In selecting appropriate behaviors, animals should weigh sensory evidence both for and against specific beliefs about the world. For instance, animals measure optic flow to estimate and control their own rotation. However, existing models of flow detection can be spuriously triggered by visual motion created by objects moving in the world. Here, we show that stationary patterns on the retina, which constitute evidence against observer rotation, suppress inappropriate stabilizing rotational behavior in the fruit fly Drosophila. In silico experiments show that artificial neural networks (ANNs) that are optimized to distinguish observer movement from external object motion similarly detect stationarity and incorporate negative evidence. Employing neural measurements and genetic manipulations, we identified components of the circuitry for stationary pattern detection, which runs parallel to the fly's local motion and optic-flow detectors. Our results show how the fly brain incorporates negative evidence to improve heading stability, exemplifying how a compact brain exploits geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Braedyn Au
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Natalia C B Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
14
|
Barandela M, Núñez-González C, Suzuki DG, Jiménez-López C, Pombal MA, Pérez-Fernández J. Unravelling the functional development of vertebrate pathways controlling gaze. Front Cell Dev Biol 2023; 11:1298486. [PMID: 37965576 PMCID: PMC10640995 DOI: 10.3389/fcell.2023.1298486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Animals constantly redirect their gaze away or towards relevant targets and, besides these goal-oriented responses, stabilizing movements clamp the visual scene avoiding image blurring. The vestibulo-ocular (VOR) and the optokinetic reflexes are the main contributors to gaze stabilization, whereas the optic tectum integrates multisensory information and generates orienting/evasive gaze movements in all vertebrates. Lampreys show a unique stepwise development of the visual system whose understanding provides important insights into the evolution and development of vertebrate vision. Although the developmental emergence of the visual components, and the retinofugal pathways have been described, the functional development of the visual system and the development of the downstream pathways controlling gaze are still unknown. Here, we show that VOR followed by light-evoked eye movements are the first to appear already in larvae, despite their burrowed lifestyle. However, the circuits controlling goal-oriented responses emerge later, in larvae in non-parasitic lampreys but during late metamorphosis in parasitic lampreys. The appearance of stabilizing responses earlier than goal-oriented in the lamprey development shows a stepwise transition from simpler to more complex visual systems, offering a unique opportunity to isolate the functioning of their underlying circuits.
Collapse
Affiliation(s)
- Marta Barandela
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Carmen Núñez-González
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Daichi G. Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Cecilia Jiménez-López
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Manuel A. Pombal
- Department of Functional Biology and Health Sciences, Facultade de Bioloxía-IBIV, Universidade de Vigo, Campus universitario Lagoas, Marcosende, Vigo, Spain
| | - Juan Pérez-Fernández
- CINBIO, Universidade de Vigo, Neurocircuits Group, Campus universitario Lagoas, Marcosende, Vigo, Spain
- Department of Functional Biology and Health Sciences, Facultade de Bioloxía-IBIV, Universidade de Vigo, Campus universitario Lagoas, Marcosende, Vigo, Spain
| |
Collapse
|
15
|
Lambert FM, Beraneck M, Straka H, Simmers J. Locomotor efference copy signaling and gaze control: An evolutionary perspective. Curr Opin Neurobiol 2023; 82:102761. [PMID: 37604066 DOI: 10.1016/j.conb.2023.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 07/22/2023] [Indexed: 08/23/2023]
Abstract
Neural replicas of the spinal motor commands that drive locomotion have become increasingly recognized as an intrinsic neural mechanism for producing gaze-stabilizing eye movements that counteract the perturbing effects of self-generated head/body motion. By pre-empting reactive signaling by motion-detecting vestibular sensors, such locomotor efference copies (ECs) provide estimates of the sensory consequences of behavioral action. Initially demonstrated in amphibian larvae during spontaneous fictive swimming in deafferented in vitro preparations, direct evidence for a contribution of locomotor ECs to gaze stabilization now extends to the ancestral lamprey and to tetrapod adult frogs and mice. Supporting behavioral evidence also exists for other mammals, including humans, therefore further indicating the mechanism's conservation during vertebrate evolution. The relationship between feedforward ECs and vestibular sensory feedback in ocular movement control is variable, ranging from additive to the former supplanting the latter, depending on vestibular sensing ability, and the intensity and regularity of rhythmic locomotor movements.
Collapse
Affiliation(s)
- François M Lambert
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, Université de Bordeaux, 33706 Bordeaux, France
| | - Mathieu Beraneck
- Integrative Neuroscience and Cognition Center, CNRS UMR 8002, Université Paris Cité, 75006 Paris, France
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - John Simmers
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS Unité Mixte de Recherche 5287, Université de Bordeaux, 33706 Bordeaux, France.
| |
Collapse
|
16
|
Tanaka R, Zhou B, Agrochao M, Badwan BA, Au B, Matos NCB, Clark DA. Neural mechanisms to incorporate visual counterevidence in self motion estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522814. [PMID: 36711843 PMCID: PMC9881891 DOI: 10.1101/2023.01.04.522814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In selecting appropriate behaviors, animals should weigh sensory evidence both for and against specific beliefs about the world. For instance, animals measure optic flow to estimate and control their own rotation. However, existing models of flow detection can confuse the movement of external objects with genuine self motion. Here, we show that stationary patterns on the retina, which constitute negative evidence against self rotation, are used by the fruit fly Drosophila to suppress inappropriate stabilizing rotational behavior. In silico experiments show that artificial neural networks optimized to distinguish self and world motion similarly detect stationarity and incorporate negative evidence. Employing neural measurements and genetic manipulations, we identified components of the circuitry for stationary pattern detection, which runs parallel to the fly's motion- and optic flow-detectors. Our results exemplify how the compact brain of the fly incorporates negative evidence to improve heading stability, exploiting geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Present Address: Institute of Neuroscience, Technical University of Munich, Munich 80802, Germany
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bara A. Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Braedyn Au
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Natalia C. B. Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A. Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
17
|
Goldblatt D, Huang S, Greaney MR, Hamling KR, Voleti V, Perez-Campos C, Patel KB, Li W, Hillman EMC, Bagnall MW, Schoppik D. Neuronal birthdate reveals topography in a vestibular brainstem circuit for gaze stabilization. Curr Biol 2023; 33:1265-1281.e7. [PMID: 36924768 PMCID: PMC10089979 DOI: 10.1016/j.cub.2023.02.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.
Collapse
Affiliation(s)
- Dena Goldblatt
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Stephanie Huang
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Marie R Greaney
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; University of Chicago, Chicago, IL 60637, USA
| | - Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venkatakaushik Voleti
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Citlali Perez-Campos
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Wenze Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO 63130, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
18
|
Fritzsch B, Kersigo J, Rejent K, Gherman W, Frank PW, Giovannucci DR, Maklad A. Hair cell morphological patterns and polarity organization in the sea lamprey vestibular cristae. Anat Rec (Hoboken) 2023. [PMID: 36651665 DOI: 10.1002/ar.25164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
The inner ear of the sea lamprey was examined by scanning electron microscopy, antibody labeling with tubulin, Myo7a, Spectrin, and Phalloidin stain to elucidate the canal cristae organization and the morphology and polarity of the hair cells. We characterized the hair cell stereocilia bundles and their morphological polarity with respect to the kinocilia. We identified three types of hair cells. In Type 1 hair cells, the kinocilia were slightly longer than the tallest stereocilia. This type was located along the medial bank of the crista and their polarity, based on kinocilia location, was uniformly pointed ampullipetally. Type 2 hair cells that had kinocilia that were much longer than the stereocilia, were most abundant in the central region of the crista. This type of hair cell displayed variable polarity. Type 3 hair cells had extremely long kinocilia (~40-50 μm long) and with extremely short stereocilia. They were mostly located in the lateral zone crista and displayed ampullipetal polarity. Myo7a and tubulin antibodies revealed that hair cells and vestibular afferents are distributed across the canal cristae in the lamprey, covering the area of cruciate eminence; a feature that is absent in more derived vertebrates. Spectrin shows hair cells of varying polarities in the central zone. In this zone, some cells followed the main polarity vector (lateral) like those in medial and lateral zones, whereas other cells displayed polarities that carried up to 40° from the main polarity vector.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Jennifer Kersigo
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Kassidy Rejent
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Wesley Gherman
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Patrick W Frank
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - David R Giovannucci
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Adel Maklad
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA.,Department of Medical Education, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
19
|
Straka H, Lambert FM, Simmers J. Role of locomotor efference copy in vertebrate gaze stabilization. Front Neural Circuits 2022; 16:1040070. [PMID: 36569798 PMCID: PMC9780284 DOI: 10.3389/fncir.2022.1040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Vertebrate locomotion presents a major challenge for maintaining visual acuity due to head movements resulting from the intimate biomechanical coupling with the propulsive musculoskeletal system. Retinal image stabilization has been traditionally ascribed to the transformation of motion-related sensory feedback into counteracting ocular motor commands. However, extensive exploration of spontaneously active semi-intact and isolated brain/spinal cord preparations of the amphibian Xenopus laevis, have revealed that efference copies (ECs) of the spinal motor program that generates axial- or limb-based propulsion directly drive compensatory eye movements. During fictive locomotion in larvae, ascending ECs from rostral spinal central pattern generating (CPG) circuitry are relayed through a defined ascending pathway to the mid- and hindbrain ocular motor nuclei to produce conjugate eye rotations during tail-based undulatory swimming in the intact animal. In post-metamorphic adult frogs, this spinal rhythmic command switches to a bilaterally-synchronous burst pattern that is appropriate for generating convergent eye movements required for maintaining image stability during limb kick-based rectilinear forward propulsion. The transition between these two fundamentally different coupling patterns is underpinned by the emergence of altered trajectories in spino-ocular motor coupling pathways that occur gradually during metamorphosis, providing a goal-specific, morpho-functional plasticity that ensures retinal image stability irrespective of locomotor mode. Although the functional impact of predictive ECs produced by the locomotory CPG matches the spatio-temporal specificity of reactive sensory-motor responses, rather than contributing additively to image stabilization, horizontal vestibulo-ocular reflexes (VORs) are selectively suppressed during intense locomotor CPG activity. This is achieved at least in part by an EC-mediated attenuation of mechano-electrical encoding at the vestibular sensory periphery. Thus, locomotor ECs and their potential suppressive impact on vestibular sensory-motor processing, both of which have now been reported in other vertebrates including humans, appear to play an important role in the maintenance of stable vision during active body displacements.
Collapse
Affiliation(s)
- Hans Straka
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Hans Straka,
| | - François M. Lambert
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France
| |
Collapse
|