1
|
Kirschner H, Molla HM, Nassar MR, de Wit H, Ullsperger M. Methamphetamine-induced adaptation of learning rate dynamics depend on baseline performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.04.602054. [PMID: 39026741 PMCID: PMC11257491 DOI: 10.1101/2024.07.04.602054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The ability to calibrate learning according to new information is a fundamental component of an organism's ability to adapt to changing conditions. Yet, the exact neural mechanisms guiding dynamic learning rate adjustments remain unclear. Catecholamines appear to play a critical role in adjusting the degree to which we use new information over time, but individuals vary widely in the manner in which they adjust to changes. Here, we studied the effects of a low dose of methamphetamine (MA), and individual differences in these effects, on probabilistic reversal learning dynamics in a within-subject, double-blind, randomized design. Participants first completed a reversal learning task during a drug-free baseline session to provide a measure of baseline performance. Then they completed the task during two sessions, one with MA (20 mg oral) and one with placebo (PL). First, we showed that, relative to PL, MA modulates the ability to dynamically adjust learning from prediction errors. Second, this effect was more pronounced in participants who performed moderately low at baseline. These results present novel evidence for the involvement of catecholaminergic transmission on learning flexibility and highlights that baseline performance modulates the effect of the drug.
Collapse
Affiliation(s)
- Hans Kirschner
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany
| | - Hanna M Molla
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Matthew R Nassar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence RI 02912-1821, USA
- Department of Neuroscience, Brown University, Providence RI 02912-1821, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Markus Ullsperger
- Institute of Psychology, Otto-von-Guericke University, D-39106 Magdeburg, Germany
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany
- German Center for Mental Health (DZPG), Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| |
Collapse
|
2
|
Hill JA, Korponay C, Salmeron BJ, Ross TJ, Janes AC. Catecholaminergic Modulation of Large-Scale Network Dynamics Is Tied to the Reconfiguration of Corticostriatal Connectivity. Hum Brain Mapp 2024; 45:e70086. [PMID: 39665506 PMCID: PMC11635694 DOI: 10.1002/hbm.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024] Open
Abstract
Large-scale brain network function is critical for healthy cognition, yet links between such network function, neurochemistry, and smaller-scale neurocircuitry are unclear. Here, we evaluated 59 healthy individuals using resting-state fMRI to determine how network-level temporal dynamics were impacted by two well-characterized pharmacotherapies targeting catecholamines: methylphenidate (20 mg) and haloperidol (2 mg)-administered via randomized, double-blind, placebo-controlled design. Network temporal dynamic changes were tested for links with drug-induced alterations in complex corticostriatal connections as this circuit is a primary site of action for both drugs. Methylphenidate increased time in the default mode network state (DMN p < 0.001) and dorsal attention network state (DAN p < 0.001) and reduced time in the frontoparietal network state (p < 0.01). Haloperidol increased time in a sensory motor-DMN state (p < 0.01). The magnitude of change in network dynamics induced by methylphenidate vs. placebo correlated with the magnitude of methylphenidate-induced rearrangement of complex corticostriatal connectivity (R = 0.32, p = 0.014). Haloperidol did not alter complex corticostriatal connectivity. Methylphenidate enhanced time in network states involved in internal and external attention (DMN and DAN, respectively), aligning with methylphenidate's established role in attention. Methylphenidate also significantly changed complex corticostriatal connectivity by altering the relative strength between multiple corticostriatal connections, indicating that methylphenidate may shift which corticostriatal connections are prioritized relative to others. Findings show that these corticostriatal circuit changes are linked with large-scale network temporal dynamics. Collectively, these findings provide a deeper understanding of large-scale network function, set a stage for mechanistic understanding of network engagement, and provide useful information to guide medication use based on network-level effects. Trial Registration: Registry name: ClinicalTrials.gov; URL: Brain Networks and Addiction Susceptibility-Full Text View-ClinicalTrials.gov; URL Plain text: https://classic.clinicaltrials.gov/ct2/show/NCT01924468; Identifier: NCT01924468.
Collapse
Affiliation(s)
- Justine A. Hill
- Biomedical Research CenterNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMarylandUSA
| | - Cole Korponay
- McLean Imaging CenterMcLean HospitalBelmontMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Betty Jo Salmeron
- Biomedical Research CenterNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMarylandUSA
| | - Thomas J. Ross
- Biomedical Research CenterNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMarylandUSA
| | - Amy C. Janes
- Biomedical Research CenterNational Institute on Drug Abuse Intramural Research ProgramBaltimoreMarylandUSA
| |
Collapse
|
3
|
Erfanian Abdoust M, Froböse MI, Schnitzler A, Schreivogel E, Jocham G. Dopamine and acetylcholine have distinct roles in delay- and effort-based decision-making in humans. PLoS Biol 2024; 22:e3002714. [PMID: 38995982 PMCID: PMC11268711 DOI: 10.1371/journal.pbio.3002714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/24/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
In everyday life, we encounter situations that require tradeoffs between potential rewards and associated costs, such as time and (physical) effort. The literature indicates a prominent role for dopamine in discounting of both delay and effort, with mixed findings for delay discounting in humans. Moreover, the reciprocal antagonistic interaction between dopaminergic and cholinergic transmission in the striatum suggests a potential opponent role of acetylcholine in these processes. We found opposing effects of dopamine D2 (haloperidol) and acetylcholine M1 receptor (biperiden) antagonism on specific components of effort-based decision-making in healthy humans: haloperidol decreased, whereas biperiden increased the willingness to exert physical effort. In contrast, delay discounting was reduced under haloperidol, but not affected by biperiden. Together, our data suggest that dopamine, acting at D2 receptors, modulates both effort and delay discounting, while acetylcholine, acting at M1 receptors, appears to exert a more specific influence on effort discounting only.
Collapse
Affiliation(s)
- Mani Erfanian Abdoust
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Monja Isabel Froböse
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Elisabeth Schreivogel
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Gerhard Jocham
- Biological Psychology of Decision Making, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Jansen M, Overgaauw S, de Bruijn ERA. L-DOPA and oxytocin influence the neural correlates of performance monitoring for self and others. Psychopharmacology (Berl) 2024; 241:1079-1092. [PMID: 38286857 PMCID: PMC11031497 DOI: 10.1007/s00213-024-06541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
RATIONALE The ability to monitor the consequences of our actions for others is imperative for flexible and adaptive behavior, and allows us to act in a (pro)social manner. Yet, little is known about the neurochemical mechanisms underlying alterations in (pro)social performance monitoring. OBJECTIVE The aim of this functional magnetic resonance imaging (fMRI) study was to improve our understanding of the role of dopamine and oxytocin and their potential overlap in the neural mechanisms underlying performance monitoring for own versus others' outcomes. METHOD Using a double-blind placebo-controlled cross-over design, 30 healthy male volunteers were administered oxytocin (24 international units), the dopamine precursor L-DOPA (100 mg + 25 mg carbidopa), or placebo in three sessions. Participants performed a computerized cannon shooting game in two recipient conditions where mistakes resulted in negative monetary consequences for (1) oneself or (2) an anonymous other participant. RESULTS Results indicated reduced error-correct differentiation in the ventral striatum after L-DOPA compared to placebo, independent of recipient. Hence, pharmacological manipulation of dopamine via L-DOPA modulated performance-monitoring activity in a brain region associated with reward prediction and processing in a domain-general manner. In contrast, oxytocin modulated the BOLD response in a recipient-specific manner, such that it specifically enhanced activity for errors that affected the other in the pregenual anterior cingulate cortex (pgACC), a region previously implicated in the processing of social rewards and prediction errors. Behaviorally, we also found reduced target sizes-indicative of better performance-after oxytocin, regardless of recipient. Moreover, after oxytocin lower target sizes specifically predicted higher pgACC activity when performing for others. CONCLUSIONS These different behavioral and neural patterns after oxytocin compared to L-DOPA administration highlight a divergent role of each neurochemical in modulating the neural mechanisms underlying social performance monitoring.
Collapse
Affiliation(s)
- Myrthe Jansen
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands.
| | - Sandy Overgaauw
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| | - Ellen R A de Bruijn
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition (LIBC), Leiden, The Netherlands
| |
Collapse
|
5
|
Hitchcock PF, Frank MJ. From Tripping and Falling to Ruminating and Worrying: A Meta-Control Account of Repetitive Negative Thinking. Curr Opin Behav Sci 2024; 56:101356. [PMID: 39130377 PMCID: PMC11314892 DOI: 10.1016/j.cobeha.2024.101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Repetitive negative thinking (RNT) is a transdiagnostic construct that encompasses rumination and worry, yet what precisely is shared between rumination and worry is unclear. To clarify this, we develop a meta-control account of RNT. Meta-control refers to the reinforcement and control of mental behavior via similar computations as reinforce and control motor behavior. We propose rumination and worry are coarse terms for failure in meta-control, just as tripping and falling are coarse terms for failure in motor control. We delineate four meta-control stages and risk factors increasing the chance of failure at each, including open-ended thoughts (stage 1), individual differences influencing subgoal execution (stage 2) and switching (stage 3), and challenges inherent to learning adaptive mental behavior (stage 4). Distinguishing these stages therefore elucidates diverse processes that lead to the same behavior of excessive RNT. Our account also subsumes prominent clinical accounts of RNT into a computational cognitive neuroscience framework.
Collapse
Affiliation(s)
- Peter F. Hitchcock
- Department of Psychology, Emory University, Atlanta, GA
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI
| | - Michael J. Frank
- Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI
- Carney Institute for Brain Science, Brown University, Providence, RI
| |
Collapse
|
6
|
Eshel N, Touponse GC, Wang AR, Osterman AK, Shank AN, Groome AM, Taniguchi L, Cardozo Pinto DF, Tucciarone J, Bentzley BS, Malenka RC. Striatal dopamine integrates cost, benefit, and motivation. Neuron 2024; 112:500-514.e5. [PMID: 38016471 PMCID: PMC10922131 DOI: 10.1016/j.neuron.2023.10.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
Striatal dopamine (DA) release has long been linked to reward processing, but it remains controversial whether DA release reflects costs or benefits and how these signals vary with motivation. Here, we measure DA release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) while independently varying costs and benefits and apply behavioral economic principles to determine a mouse's level of motivation. We reveal that DA release in both structures incorporates both reward magnitude and sunk cost. Surprisingly, motivation was inversely correlated with reward-evoked DA release. Furthermore, optogenetically evoked DA release was also heavily dependent on sunk cost. Our results reconcile previous disparate findings by demonstrating that striatal DA release simultaneously encodes cost, benefit, and motivation but in distinct manners over different timescales. Future work will be necessary to determine whether the reduction in phasic DA release in highly motivated animals is due to changes in tonic DA levels.
Collapse
Affiliation(s)
- Neir Eshel
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gavin C Touponse
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Allan R Wang
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Amber K Osterman
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Amei N Shank
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexandra M Groome
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara Taniguchi
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Cardozo Pinto
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Tucciarone
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Brandon S Bentzley
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Grill F, Guitart-Masip M, Johansson J, Stiernman L, Axelsson J, Nyberg L, Rieckmann A. Dopamine release in human associative striatum during reversal learning. Nat Commun 2024; 15:59. [PMID: 38167691 PMCID: PMC10762220 DOI: 10.1038/s41467-023-44358-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The dopaminergic system is firmly implicated in reversal learning but human measurements of dopamine release as a correlate of reversal learning success are lacking. Dopamine release and hemodynamic brain activity in response to unexpected changes in action-outcome probabilities are here explored using simultaneous dynamic [11C]Raclopride PET-fMRI and computational modelling of behavior. When participants encounter reversed reward probabilities during a card guessing game, dopamine release is observed in associative striatum. Individual differences in absolute reward prediction error and sensitivity to errors are associated with peak dopamine receptor occupancy. The fMRI response to perseverance errors at the onset of a reversal spatially overlap with the site of dopamine release. Trial-by-trial fMRI correlates of absolute prediction errors show a response in striatum and association cortices, closely overlapping with the location of dopamine release, and separable from a valence signal in ventral striatum. The results converge to implicate striatal dopamine release in associative striatum as a central component of reversal learning, possibly signifying the need for increased cognitive control when new stimuli-responses should be learned.
Collapse
Affiliation(s)
- Filip Grill
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Marc Guitart-Masip
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Center for Psychiatry Research, Region Stockholm, Stockholm, Sweden
- Center for Cognitive and Computational Neuropsychiatry (CCNP), Karolinska Institutet, Stockholm, Sweden
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Jarkko Johansson
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Lars Stiernman
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Radiation Physics, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Anna Rieckmann
- Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Institute for Psychology, University of the Bundeswehr Munich, Neubiberg, Germany.
| |
Collapse
|
8
|
Sayalı C, van den Bosch R, Määttä JI, Hofmans L, Papadopetraki D, Booij J, Verkes RJ, Baas M, Cools R. Methylphenidate undermines or enhances divergent creativity depending on baseline dopamine synthesis capacity. Neuropsychopharmacology 2023; 48:1849-1858. [PMID: 37270619 PMCID: PMC10584959 DOI: 10.1038/s41386-023-01615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Catecholamine-enhancing psychostimulants, such as methylphenidate have long been argued to undermine creative thinking. However, prior evidence for this is weak or contradictory, stemming from studies with small sample sizes that do not consider the well-established large variability in psychostimulant effects across different individuals and task demands. We aimed to definitively establish the link between psychostimulants and creative thinking by measuring effects of methylphenidate in 90 healthy participants on distinct creative tasks that measure convergent and divergent thinking, as a function of individuals' baseline dopamine synthesis capacity, indexed with 18F-FDOPA PET imaging. In a double-blind, within-subject design, participants were administered methylphenidate, placebo or selective D2 receptor antagonist sulpiride. The results showed that striatal dopamine synthesis capacity and/or methylphenidate administration did not affect divergent and convergent thinking. However, exploratory analysis demonstrated a baseline dopamine-dependent effect of methylphenidate on a measure of response divergence, a creativity measure that measures response variability. Response divergence was reduced by methylphenidate in participants with low dopamine synthesis capacity but enhanced in those with high dopamine synthesis capacity. No evidence of any effect of sulpiride was found. These results show that methylphenidate can undermine certain forms of divergent creativity but only in individuals with low baseline dopamine levels.
Collapse
Affiliation(s)
- Ceyda Sayalı
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ruben van den Bosch
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jessica I Määttä
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Lieke Hofmans
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Danae Papadopetraki
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robbert-Jan Verkes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Matthijs Baas
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Lorents A, Colin ME, Bjerke IE, Nougaret S, Montelisciani L, Diaz M, Verschure P, Vezoli J. Human Brain Project Partnering Projects Meeting: Status Quo and Outlook. eNeuro 2023; 10:ENEURO.0091-23.2023. [PMID: 37669867 PMCID: PMC10481639 DOI: 10.1523/eneuro.0091-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
As the European Flagship Human Brain Project (HBP) ends in September 2023, a meeting dedicated to the Partnering Projects (PPs), a collective of independent research groups that partnered with the HBP, was held on September 4-7, 2022. The purpose of this meeting was to allow these groups to present their results, reflect on their collaboration with the HBP and discuss future interactions with the European Research Infrastructure (RI) EBRAINS that has emerged from the HBP. In this report, we share the tour-de-force that the Partnering Projects that were present in the meeting have made in furthering knowledge concerning various aspects of Brain Research with the HBP. We describe briefly major achievements of the HBP Partnering Projects in terms of a systems-level understanding of the functional architecture of the brain and its possible emulation in artificial systems. We then recapitulate open discussions with EBRAINS representatives about the evolution of EBRAINS as a sustainable Research Infrastructure for the Partnering Projects after the HBP, and also for the wider scientific community.
Collapse
Affiliation(s)
| | | | - Ingvild Elise Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway
| | - Simon Nougaret
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Aix Marseille Université, Centre National de la Recherche Scientifique, Marseille 13005, France
| | - Luca Montelisciani
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Marissa Diaz
- Institute for Advanced Simulation (IAS), Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Paul Verschure
- Donders Center for Neuroscience (DCN-FNWI), Radboud University, Nijmegen 6500HD, The Netherlands
| | - Julien Vezoli
- Ernst Strügmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main 60528, Germany
- Institut National de la Santé et de la Recherche Médicale Unité 1208, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| |
Collapse
|