1
|
Yan XB, Liu YQ, Wang N, Zhang T, Li D, Wang Z, Lin Y, Zhang K. Decarboxylative Cross-Acyl Coupling of Carboxylic Acids with Aldehydes Enabled by Nickel/Photoredox Catalysis. J Am Chem Soc 2025; 147:15929-15935. [PMID: 40279385 DOI: 10.1021/jacs.5c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
We present a general method for accessing unsymmetrical alkyl-aryl and alkyl-alkyl ketones via nickel/photoredox-catalyzed decarboxylative cross-acyl coupling reactions between carboxylic acids and aldehydes without the need for an additional preactivation procedure. Specifically, by using the peroxide as both an oxidant and hydrogen atom transfer (HAT) reagent, we achieved the unprecedented combination of oxidative single electron transfer (SET) of carboxylates and HAT of aldehydes, in which the generated alkyl and acyl radicals were chemoselectively coupled by nickel catalysis. This method features a broad substrate scope with good functional group compatibility and offers new access to structurally diverse ketones.
Collapse
Affiliation(s)
- Xiao-Biao Yan
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| | - Ying-Qi Liu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| | - Ning Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| | - Danqing Li
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| | - Zhicai Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| | - Yunzhi Lin
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Ma'an shan 243032, China
| |
Collapse
|
2
|
Lu YC, Adukure RD, Roy S, Chien DL, McGill MJ, Polara S, Cisneros GA, Scheidt KA, Fasan R. Photobiocatalytic Enantioselective Benzylic C(sp 3)-H Acylation Enabled by Thiamine-Dependent Enzymes via Intermolecular Hydrogen Atom Transfer. J Am Chem Soc 2025. [PMID: 40369825 DOI: 10.1021/jacs.5c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Hydrogen atom transfer (HAT) constitutes a powerful mechanism exploited in biology and chemistry to functionalize ubiquitous C(sp3)-H bonds in organic molecules. Despite its synthetic potential, achieving stereocontrol in chemical HAT-mediated C-H functionalization transformations remains challenging. By merging the radical reactivity of thiamine (ThDP)-dependent enzymes with chemical hydrogen atom transfer, we report here a photobiocatalytic strategy for the enantioselective C(sp3)-H acylation of an organic substrate, a transformation not found in nature nor currently attainable by chemical means. This method enables the direct functionalization of benzylic C(sp3)-H sites in a broad range of substrates to furnish valuable enantioenriched ketone motifs with good to high enantioselectivity (up to 96% ee). Mechanistic and spectroscopic studies support the involvement of radical species derived from the Breslow intermediate and C-H substrate, highlight the critical role of the photocatalyst and hydrogen atom abstraction reagents for productive catalysis, and reveal a specific enzyme/photocatalyst interaction favoring single electron transfer during catalysis. Further insights into how the enantioselectivity of the C-C bond-forming reaction is controlled by the enzyme and influenced by active site mutations were gained via molecular modeling. This study illustrates the productive integration of ThDP-mediated biocatalysis with chemical HAT, expanding the range of asymmetric C(sp3)-H functionalization transformations that can be accessed through biocatalysis.
Collapse
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ronald D Adukure
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Satyajit Roy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Derek L Chien
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Matthew J McGill
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarthi Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Wang C, Liu Y, Wan JP. Construction of Fused Oxacyclic Compounds via Dual α- and β-C-H Functionalization and Ring Decomposition of Cyclic Ethers. Org Lett 2025; 27:3983-3987. [PMID: 40179307 DOI: 10.1021/acs.orglett.5c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
A new synthetic method for the synthesis of bicyclic scaffolds featuring a dihydropyran and tetrahydrofuran (THF) hybrid in the fashion of a fused structure with excellent syn-selectivity is realized via the reactions of enaminones and THF. In addition to displaying a dual role as both a cyclic fragment and a one-carbon synthon, the current method also shows a rarely known mode of two vicinal C-H bonds' functionalization in THF or analogous oxa-heterocycles.
Collapse
Affiliation(s)
- Chenxu Wang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
4
|
Koo Y, Hong S. Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination. Chem Sci 2024; 15:7707-7713. [PMID: 38784747 PMCID: PMC11110154 DOI: 10.1039/d4sc02164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The extensive utility of organosilicon compounds across a wide range of disciplines has sparked significant interest in their efficient synthesis. Although catalytic 1,2-silyldifunctionalization of alkenes provides a promising method for the assembly of intricate organosilicon frameworks with atom and step economy, its advancement is hindered by the requirement of an external hydrogen atom transfer (HAT) agent in photoredox catalysis. Herein, we disclose an efficient three-component silylacylation of α,β-unsaturated carbonyl compounds, leveraging a synergistic nickel/photoredox catalysis with various hydrosilanes and aroyl chlorides. This method enables the direct conversion of acrylates into valuable building blocks that contain both carbonyl and silicon functionalities through a single, redox-neutral process. Key to this reaction is the precise activation of the Si-H bond, achieved through chlorine radical-induced HAT, enabled by the photoelimination of a Ni-Cl bond. Acyl chlorides serve a dual role, functioning as both acylating agents and chloride donors. Our methodology is distinguished by its mild conditions and extensive substrate adaptability, significantly enhancing the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
5
|
Khatua B, Ghosh A, Ray AK, Banerjee N, Dey J, Paul A, Guin J. Photocatalytic Synthesis of β-Keto Primary Chlorides by Selective Chlorocarbonylation of Olefins. Angew Chem Int Ed Engl 2024; 63:e202402849. [PMID: 38389271 DOI: 10.1002/anie.202402849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Functionalized primary alkyl chlorides are precursors to a plethora of scaffolds but their access from chemical feedstocks remains challenging. Herein, we report a concise dual Ni/photoredox catalytic protocol for regioselective chlorocarbonylation of unactivated alkenes that enables rapid access to β-keto primary chlorides. The catalytic process features an extensive substrate scope, scalability and functional group tolerance. The Ni/photocatalytic Cl⋅ generation and subsequent cross-coupling is implicated for the process based on the control experiments and DFT study. The synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and modifications of the product.
Collapse
Affiliation(s)
- Bitasik Khatua
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anjulika Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anuj Kumar Ray
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Jayanta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
6
|
Cui J, Niu KK, Zhang RZ, Liu H, Yu S, Xing LB. Photocatalytic selective oxidation of toluene under encapsulated air conditions. Chem Commun (Camb) 2024; 60:4310-4313. [PMID: 38533635 DOI: 10.1039/d4cc00915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Benzaldehydes are indispensable building blocks in chemistry. However, the selective oxidation of toluene to benzaldehyde remains an ongoing challenge due to the low oxidation potential of benzaldehyde compared to toluene. We report herein a mild protocol that combines hydrogen atom transfer (HAT) with encapsulated air conditions and suitable catalyst loading for selective oxidation of toluene with high selectivity as well as good functional-group tolerance and a broad substrate scope for the synthesis of various high-value aromatic aldehydes. Moreover, the compatibility of this reaction with toluene derivatives of bioactive molecules further demonstrated the practicality of this approach. Mechanism studies have demonstrated that the collaboration between the oxygen quantity and the HAT catalytic system has a major impact on the high selectivity of the reaction. This study not only showcases the effectiveness of HAT strategies toward selective oxidation of toluene to benzaldehyde, but also provides an approach to controlling the selectivity of HAT reactions.
Collapse
Affiliation(s)
- Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rong-Zhen Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
7
|
Niu KK, Cui J, Dong RZ, Yu S, Liu H, Xing LB. Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 H)-ones using alkanes. Chem Commun (Camb) 2024; 60:2409-2412. [PMID: 38323602 DOI: 10.1039/d3cc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Due to the high C-H bond dissociation energy of alkanes, the utilization of alkanes as alkyl radical precursors for C-H functionalization of heteroarenes is synthetically captivating but practically challenging, especially under metal- and photocatalyst-free conditions. We report herein a mild and practical visible-light-mediated method for C-H alkylation of quinoxalin-2(1H)-ones using trifluoroacetic acid as a hydrogen atom transfer reagent and air as an oxidant. This mild protocol was performed under metal- and photocatalyst-free circumstances and presented good functional-group tolerance as well as a broad substrate scope.
Collapse
Affiliation(s)
- Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Jing Cui
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Rui-Zhi Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| |
Collapse
|
8
|
Cao J, Zhu JL, Scheidt KA. Photoinduced cerium-catalyzed C-H acylation of unactivated alkanes. Chem Sci 2023; 15:154-159. [PMID: 38131082 PMCID: PMC10732008 DOI: 10.1039/d3sc05162e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Ketones are ubiquitous motifs in the realm of pharmaceuticals and natural products. Traditional approaches to accessing these species involve the addition of metal reagents to carboxyl compounds under harsh conditions. Herein, we report a cerium-catalyzed acylation of unactivated C(sp3)-H bonds using bench-stable acyl azolium reagents under mild and operationally-friendly conditions. This reaction exhibits excellent generality, accommodating a wide range of feedstock chemicals such as cycloalkanes and acyclic compounds as well as facilitating the late-stage functionalization of pharmaceuticals. We demonstrate further applications of our strategy with a three-component radical relay reaction and an enantioselective N-heterocyclic carbene (NHC) and cerium dual-catalyzed reaction.
Collapse
Affiliation(s)
- Jing Cao
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Joshua L Zhu
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
9
|
Kim J, Müller S, Ritter T. Synthesis of α-Branched Enones via Chloroacylation of Terminal Alkenes. Angew Chem Int Ed Engl 2023; 62:e202309498. [PMID: 37786992 DOI: 10.1002/anie.202309498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Here, we show the conversion of unactivated alkenes into α-branched enones via regioselective chloroacylation with acyl chlorides. The method relies upon the initial in situ generation of chlorine radicals directly from the acyl chloride precursor under cooperative nickel/photoredox catalysis. Subsequent HCl elimination provides enones and α,β-unsaturated esters that are not accessible via the conventional acylation approaches that provide the other, linear constitutional isomer.
Collapse
Affiliation(s)
- Jungwon Kim
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sven Müller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Lee GS, Hong SH. Direct C(sp 3)-H Acylation by Mechanistically Controlled Ni/Ir Photoredox Catalysis. Acc Chem Res 2023; 56:2170-2184. [PMID: 37506313 DOI: 10.1021/acs.accounts.3c00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
ConspectusSynthetic chemists have consistently aimed to develop efficient methods for synthesizing ketones, which are essential building blocks in organic chemistry and play significant roles in bioactive molecules. Recent efforts have focused on using photoredox catalysis, which enables previously inaccessible activation modes, to synthesize ketones through the cross-coupling of an acyl electrophile and simple C(sp3)-H bonds. Over the past few years, we have worked on developing effective and versatile approaches for directly acylating activated hydrocarbons to forge ketones.Initially, thioesters were explored as the acyl source to achieve the direct acylation of ethers, but an unexpected thioesterification reaction was observed instead. To gain insights into this reactivity, we conducted the optimization of reaction conditions, substrate scope evaluation, and mechanistic studies. Drawing from our understanding of Ni/Ir photocatalysis obtained in this study, we subsequently developed a method for the direct acylation of simple hydrocarbons. The use of less-reactive amides as the acyl electrophiles was found to be critical for suppressing undesired pathways. This seemingly counterintuitive reactivity was carefully studied, revealing a substrate-assisted reaction mechanism in which the suppressed oxidative addition leads to early-stage nickel oxidation and C-H activation.To address the drawbacks of this method, which primarily arose from decarbonylative and transmetallative side pathways, we employed N-acyllutidiniums as the acyl electrophile. This prevented undesired decomposition pathways, enabling the use of α-chiral acyl substrates with the retention of their stereochemistry, particularly those derived from α-amino acids. The developed versatile methodology allowed us to access a diverse range of α-amino ketones and their homologues.Despite the elegant utility of Ni/photoredox catalysis in developing new synthetic methodologies, the precise behavior of nickel catalysts under redox conditions is incompletely understood. To gain insight into this behavior and develop new chemical reactions, we used a combination of experimental and computational methods. Our investigations revealed that devised adjustments to the reaction conditions in nickel/photoredox catalysis can result in significant differences in the reaction outcomes, providing chemists with opportunities to tailor reactions through carefully designed mechanistic strategies. We believe that continued efforts to study and apply nickel redox modulation will lead to the discovery of additional organic transformations.
Collapse
Affiliation(s)
- Geun Seok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Maity B, Dutta S, Cavallo L. The mechanism of visible light-induced C-C cross-coupling by C sp3-H bond activation. Chem Soc Rev 2023; 52:5373-5387. [PMID: 37464786 DOI: 10.1039/d2cs00960a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Csp3-C cross-coupling by activating Csp3-H bonds is a dream reaction for the chemical community, and visible light-induced transition metal-catalysis under mild reaction conditions is considered a powerful tool to achieve it. Advancement of this research area is still in its infancy because of the chemical and technical complexity of this catalysis. Mechanistic studies illuminating the operative reaction pathways can rationalize the increasing amount of experimental catalysis data and provide the knowledge allowing faster and rational advances in the field. This goal requires complementary experimental and theoretical mechanistic studies, as each of them is unfit to clarify the operative mechanisms alone. In this tutorial review we summarize representative experimental and computational mechanistic studies, highlighting weaknesses, strengths, and synergies between the two approaches.
Collapse
Affiliation(s)
- Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
12
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
13
|
Shu X, Zhong D, Huang Q, Huan L, Huo H. Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis. Nat Commun 2023; 14:125. [PMID: 36624097 PMCID: PMC9829739 DOI: 10.1038/s41467-023-35800-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Site- and enantioselective cross-coupling of saturated N-heterocycles and carboxylic acids-two of the most abundant and versatile functionalities-to form pharmaceutically relevant α-acylated amine derivatives remains a major challenge in organic synthesis. Here, we report a general strategy for the highly site- and enantioselective α-acylation of saturated N-heterocycles with in situ-activated carboxylic acids. This modular approach exploits the hydrogen-atom-transfer reactivity of photocatalytically generated chlorine radicals in combination with asymmetric nickel catalysis to selectively functionalize cyclic α-amino C-H bonds in the presence of benzylic, allylic, acyclic α-amino, and α-oxy methylene groups. The mild and scalable protocol requires no organometallic reagents, displays excellent chemo-, site- and enantioselectivity, and is amenable to late-stage diversification, including a modular synthesis of previously inaccessible Taxol derivatives. Mechanistic studies highlight the exceptional versatility of the chiral nickel catalyst in orchestrating (i) catalytic chlorine elimination, (ii) alkyl radical capture, (iii) cross-coupling, and (iv) asymmetric induction.
Collapse
Affiliation(s)
- Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - De Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qian Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leitao Huan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|