1
|
Liu M, Li H, Ma H, Yao C, Zhao F, Han S, Zhang Z, Wang N, Yin X. Triarylboron-Based Dual Thermally Activated Delayed Fluorescence Emitter for Single Molecule White Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21509-21520. [PMID: 40136050 DOI: 10.1021/acsami.4c20583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Single-molecule emitters with dual thermally activated delayed fluorescence (TADF) characteristics are very promising for application in organic light-emitting diodes (OLEDs). Rarely reported, organic dual-TADF materials, especially mechanochromic materials, are in demand. We present two donor-acceptor emitters, Mes*BA-Ac and FXylBA-Ac, which exhibit dual-TADF in the solid state due to the separation of HOMO and LUMO and strong intermolecular interactions. Their phase transition from amorphous to crystalline under stimuli leads to switchable TADF emissions. By blending Mes*BA-Ac with poly(methyl methacrylate), we achieve pure white light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.33, 0.32). Furthermore, single-molecule white organic light-emitting diodes (SM-WOLEDs) using Mes*BA-Ac have been fabricated, reaching a maximum external quantum efficiency (EQEmax) of 1.65% with CIE coordinates of (0.30, 0.31). More importantly, the dual-TADF emission mechanism enables the devices to maintain stable white-light emission across a relatively wide voltage range, providing valuable insights for the advancement of pure organic SM-WOLEDs.
Collapse
Affiliation(s)
- Meiyan Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Hongbo Li
- Institute of Organic Luminescent Materials (IOLM), College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Hongwei Ma
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Chunxia Yao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Fenggui Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Shuai Han
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Ziqian Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
2
|
Xie W, Cao X, Huang M, Xu K, Gui C, Chen Z, Song XF, Wei Y, Liu H, Hua T, Yang M, Yin X, Miao J, Yang C. 1,4-Azaborine Participation Enables Inaccessible Cycloarene with Unique Photophysical Properties. J Am Chem Soc 2025. [PMID: 40012343 DOI: 10.1021/jacs.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Cycloarenes and heterocycloarenes, characterized by fused macrocyclic π-conjugated structures, hold significant promise in synthetic chemistry and materials science. However, their further development remains constrained by formidable synthetic challenges, particularly for those with contracted cavities. Inspired by advances in the synthesis of organoboron-based multiresonance thermally activated delayed fluorescence (TADF) emitters, we herein report the convenient access and detailed characterization of a 1,4-azaborine-embedded cycloarene that features the smallest cavity among known (hetero)cycloarenes. The contracted cavity induces a bowl-shaped molecular geometry, as confirmed by crystallographic analysis, while also triggering through-space conjugation with delocalized π-electrons at the cavity site. Comparative studies between this compound and its helical analogue reveal a substantial topological impact on photophysical properties, including a bathochromic-shifted and broadened emission band, prolonged radiative decay process, and more efficient triplet-to-singlet spin-flip. Capitalizing on its efficient TADF with a remarkably high quantum yield, we successfully fabricated the first (hetero)cycloarene-based organic light-emitting diodes, achieving over 30% external quantum efficiency and minimal efficiency roll-off. These findings offer new insights into the design of topologically distinct organic compounds with unique properties.
Collapse
Affiliation(s)
- Wentao Xie
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
- College of Physical and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Chenghao Gui
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Yaxiong Wei
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - He Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Ming Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| |
Collapse
|
3
|
Lee J, Xie Z, Huang W, Chai M, Li X, Chan B, Cheng H, He D, Han EQ, Chen Y, Chen V, Wang L, Hou J. Aggregation suppression and enhanced blue emission of perylene in zinc-based coordination polymer glass. Chem Commun (Camb) 2025; 61:3492-3495. [PMID: 39878537 DOI: 10.1039/d4cc05790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Reducing aggregation caused quenching and enhancing stability is crucial in the fabrication of organic light-emitting diodes. Herein, we successfully fabricated blue-emitting coordination polymer glasses using perylene dye and a zinc-based coordination glass. The aggregation of perylene monomers in the solid state was significantly suppressed, and the hybrid glass demonstrated high stability and strong photoluminescent quantum yield (75.5%) under ambient conditions.
Collapse
Affiliation(s)
- Jaeho Lee
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Zixi Xie
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Wengang Huang
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xuemei Li
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Nagasa-ki, 852-8521, Japan
| | - Huiyuan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dongxu He
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - E Q Han
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Yuelei Chen
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Vicki Chen
- University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lianzhou Wang
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jingwei Hou
- School of Chemical Engineering, University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
4
|
Chen G, Miao J, Huang X, Zhang Z, Xue Z, Huang M, Li N, Cao X, Zou Y, Yang C. High-power-efficiency and ultra-long-lifetime white OLEDs empowered by robust blue multi-resonance TADF emitters. LIGHT, SCIENCE & APPLICATIONS 2025; 14:81. [PMID: 39934108 DOI: 10.1038/s41377-025-01750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 02/13/2025]
Abstract
White organic light-emitting diodes (WOLEDs) show very promising as next-generation light-sources, but achieving high power efficiency (PE) and long operational lifetime remains challenging because of the lack of stable blue emitters that can harvest all triplet (T1) excitons for light emission. Herein, we propose integrating stable azure multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters into tri-color hybrid WOLEDs to tackle these issues. By meticulously selecting MR-TADF emitters and precisely tuning the exciton recombination zone, the optimized tri-color devices based on BCzBN-3B achieve color-stable white light emission with maximum external quantum efficiency (EQEmax) and maximum PE (PEmax) of 34.4% and 101.8 lm W-1, respectively. Furthermore, the LT90, defined as the time for the luminance to drop to 90% of its initial value at 1000 cd m-2, reaches 761 h. In addition, a hybrid WOLED with deep blue emitter developed using our strategy achieves a high color rendering index of 88 and an EQEmax of 30.6%, further demonstrating the versatility and effectiveness of our approach. The record-breaking efficiency and ultra-long lifetime underscore the success of hybrid white-light devices by incorporating robust blue MR-TADF emitters. These advancements open new avenues for commercialization of hybrid WOLEDs, presenting promising solutions for energy-efficient lighting and display technologies.
Collapse
Affiliation(s)
- Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Xingyu Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhenghao Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhuixing Xue
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Deori U, Nanda GP, Murawski C, Rajamalli P. A perspective on next-generation hyperfluorescent organic light-emitting diodes. Chem Sci 2024:d4sc05489j. [PMID: 39444559 PMCID: PMC11494416 DOI: 10.1039/d4sc05489j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Hyperfluorescence, also known as thermally activated delayed fluorescence (TADF) sensitized fluorescence, is known as a next-generation efficient and innovative process for high-performance organic light-emitting diodes (OLEDs). High external quantum efficiency (EQE) and good color purity are crucial parameters for display applications. Hyperfluorescent OLEDs (HF-OLEDs) take the lead in this respect as they utilize the advantages of both TADF emitters and fluorescent dopants, realizing high EQE with color saturation and long-term stability. Hyperfluorescence is mediated through Förster resonance energy transfer (FRET) from a TADF sensitizer to the final fluorescent emitter. However, competing loss mechanisms such as Dexter energy transfer (DET) of triplet excitons and direct charge trapping on the final emitter need to be mitigated in order to achieve fluorescence emission with high efficiency. Despite tremendous progress, appropriate guidelines and fine optimization are still required to address these loss channels and to improve the device operational lifetime. This perspective aims to provide an overview of the evolution of HF-OLEDs by reviewing both molecular and device design pathways for highly efficient narrowband devices covering all colors of the visible spectrum. Existing challenges and potential solutions, such as molecules with peripheral inert substitution, multi-resonant (MR) TADF emitters as final dopants, and exciplex-sensitized HF-OLEDs, are discussed. Furthermore, the operational device lifetime is reviewed in detail before concluding with suggestions for future device development.
Collapse
Affiliation(s)
- Upasana Deori
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Gyana Prakash Nanda
- Materials Research Centre, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Caroline Murawski
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V. Kurt-Schwabe-Straße 4 04736 Waldheim Germany
- Faculty of Chemistry and Food Chemistry, Faculty of Electrical and Computer Engineering, Technische Universität Dresden 01062 Dresden Germany
| | | |
Collapse
|
6
|
Li J, Liu T, Liu J, Zhang C, Yang Y, Tan G, You J. Construction of acenaphthylenes via C-H activation-based tandem penta- and hexaannulation reactions. Nat Commun 2024; 15:8319. [PMID: 39333237 PMCID: PMC11436931 DOI: 10.1038/s41467-024-52652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Acenaphthylene-containing polycyclic aromatic hydrocarbons (AN-PAHs) are noteworthy structural motifs for organic functional materials due to their non-alternant electronic structure, which increases electron affinity. However, the synthesis of AN-PAHs has traditionally required multiple sequential synthetic steps, limiting structural diversity. Herein, we present a tandem C-H penta- and hexaannulation reaction of aryl alkyl ketone with acetylenedicarboxylate. This integrated approach enhances overall efficiency and selectivity, marking a significant advancement in AN-PAH synthesis. Mechanistic studies unveil an orchestrated extension of five- and six-membered rings through C-H activation-annulation and Diels-Alder reaction. Additionally, the tandem annulation reaction can be performed stepwise, further validating the proposed mechanism and increasing the structural diversity of AN-PAHs.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Tao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
7
|
Huang M, Chen Z, Miao J, He S, Yang W, Huang Z, Zou Y, Gong S, Tan Y, Yang C. Harmonization of rapid triplet up-conversion and singlet radiation enables efficient and stable white OLEDs. Nat Commun 2024; 15:8048. [PMID: 39277619 PMCID: PMC11401840 DOI: 10.1038/s41467-024-52401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
White organic light-emitting diodes (WOLEDs) hold significant promise in illumination and displays, but achieving high efficiency while maintaining stability is an ongoing challenge. Here, we strategically combine a blue donor-acceptor thermally activated delayed fluorescence (TADF) emitter featuring rapid reverse intersystem crossing rate and a yellow multi-resonance TADF emitter renowned for the fast radiative transition process to achieve warm WOLEDs with exceptional power efficiency exceeding 190 lm W-1 and external quantum efficiency (EQE) of 39%, setting records for WOLEDs. Meanwhile, these devices also exhibit an extended operational lifetime (LT80) of 446 h at an initial luminance of 1000 cd m-2. Another group of blue and yellow emitters based on our strategy achieves a standard white emission and a high EQE of 35.6%, confirming the universality of our strategy. This work presents a versatile strategy to harmonize singlet exciton radiation and triplet exciton up-conversion, thus achieving a win-win situation of efficiency and stability.
Collapse
Affiliation(s)
- Manli Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P. R. China
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Siyuan He
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Wei Yang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Yang Zou
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Shaolong Gong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, P. R. China
| | - Yao Tan
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, P. R. China
| | - Chuluo Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P. R. China.
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China.
| |
Collapse
|
8
|
Wang H, Zou P, Xu L, Jiang R, Shi H, Tang BZ, Zhao Z. Molecular Engineering Towards Efficient Aggregation-Induced Delayed Fluorescence Luminogens as Emitters and Sensitizers for High-Performance Organic Light-Emitting Diodes. Chem Asian J 2024:e202400827. [PMID: 39166364 DOI: 10.1002/asia.202400827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Exploring efficient thermally-activated delayed fluorescence materials having maximum external quantum efficiencies (ηext,maxs) exceeding 30 % for organic light-emitting diodes (OLEDs) still remains challenging because it generally requires efficient reverse intersystem crossing (RISC), high photoluminescence quantum yield (ΦPL), and large optical out-coupling efficiency (Φout) simultaneously. Herein, two green aggregation-induced delayed fluorescence (AIDF) luminogens, named XTCz-2 and XTCz-3, are designed and constructed by using xanthone (XT) as electron acceptor and phenylcarbazole-substituted carbazole as donors. XTCz-2 and XTCz-3 exhibit distinguished advantages of high thermal stability (439-560 °C), excellent ΦPLs (84-88 %) and fast RISC rates (1.9×105-4.2×105 s-1), and prefer horizontal dipole orientation and thus have high Φouts. Consequently, they can achieve the state-of-the-art electroluminescence (EL) performances with ηext,maxs of up to 35.0 %. Moreover, XTCz-3 is selected as a sensitizer for sky-blue multi-resonance delayed fluorescence emitter in hyperfluorescence OLEDs, providing narrow EL spectra and excellent ηext,maxs of up to 33.8 % with low efficiency roll-offs. The splendid comprehensive performances demonstrate the significant application potential of these AIDF luminogens as both light-emitting materials and sensitizers for OLEDs.
Collapse
Affiliation(s)
- Hongbo Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Peng Zou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ruming Jiang
- School of Materials and Energy, Foshan University, Foshan, 528000, China
| | - Heping Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Zhang W, Li Y, Zhang G, Yang X, Chang X, Xing G, Dong H, Wang J, Wang D, Mai Z, Jiang X. Advances in Host-Free White Organic Light-Emitting Diodes Utilizing Thermally Activated Delayed Fluorescence: A Comprehensive Review. MICROMACHINES 2024; 15:703. [PMID: 38930673 PMCID: PMC11205739 DOI: 10.3390/mi15060703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The ever-growing prominence and widespread acceptance of organic light-emitting diodes (OLEDs), particularly those employing thermally activated delayed fluorescence (TADF), have firmly established them as formidable contenders in the field of lighting technology. TADF enables achieving a 100% utilization rate and efficient luminescence through reverse intersystem crossing (RISC). However, the effectiveness of TADF-OLEDs is influenced by their high current density and limited device lifetime, which result in a significant reduction in efficiency. This comprehensive review introduces the TADF mechanism and provides a detailed overview of recent advancements in the development of host-free white OLEDs (WOLEDs) utilizing TADF. This review specifically scrutinizes advancements from three distinct perspectives: TADF fluorescence, TADF phosphorescence and all-TADF materials in host-free WOLEDs. By presenting the latest research findings, this review contributes to the understanding of the current state of host-free WOLEDs, employing TADF and underscoring promising avenues for future investigations. It aims to serve as a valuable resource for newcomers seeking an entry point into the field as well as for established members of the WOLEDs community, offering them insightful perspectives on imminent advancements.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Yaxin Li
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Gang Zhang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Xiaotian Yang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China;
| | - Xi Chang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Guoliang Xing
- Jilin Special Equipment Inspection Center, Jilin Special Equipment Accident Investigation Service Center, No. 866 Huadan Street, Longtan District, Jilin 132013, China;
| | - He Dong
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Jin Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University, Siping 136000, China; (W.Z.); (Y.L.); (X.C.); (H.D.)
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Siping 136000, China
| | - Dandan Wang
- Hubei Jiufengshan Laboratory, Wuhan 430206, China; (D.W.); (Z.M.)
| | - Zhihong Mai
- Hubei Jiufengshan Laboratory, Wuhan 430206, China; (D.W.); (Z.M.)
| | - Xin Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;
| |
Collapse
|
10
|
Lou J, Li G, Guo X, Li B, Yang D, Zhang H, Wang Z, Tang BZ. Creation of High-Quality Deep-Blue AIE Emitter with a Crossed Long-Short Axis Structure for Efficient and Versatile OLEDs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308468. [PMID: 38009497 DOI: 10.1002/smll.202308468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Developing deep-blue emitters for organic light-emitting diodes (OLEDs) is critical but challenging, which requires a good balance between light color, exciton utilization, and photoluminescence quantum yield (PLQY) of solid film. Herein, a high-quality deep-blue emitter, abbreviated 2TriPE-CzMCN, is designed by introducing an aggregation-induced emission (AIE) group into a crossed long-short axis (CLSA) skeleton. Theoretical and experimental investigations reveal that the CLSA molecular design can achieve a balance between deep-blue emission and triplet-excitons utilization, while the high PLQY of the solid film resulting from the AIE feature helps to improve the performance of OLEDs. Consequently, when 2TriPE-CzMCN is used as the emitting dopant, the OLED exhibits a deep-blue emission at 430 nm with a record-high maximum external quantum efficiency (EQE) of 8.84%. When 2TriPE-CzMCN serves as the host material, the sensitized monochrome orange and two-color white OLEDs (WOLEDs) realize high EL performances that exceed the efficiency limit of conventional fluorescent OLEDs. Moreover, high-performance three-color WOLEDs with a color rendering index (CRI) exceeding 90 and EQE up to 18.08% are achieved by using 2TriPE-CzMCN as the blue-emitting source. This work demonstrates that endowing CLSA molecule with AIE feature is an effective strategy for developing high-quality deep-blue emitters, and high-performance versatile OLEDs can be realized through rational device engineering.
Collapse
Affiliation(s)
- Jingli Lou
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ganggang Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Xuecheng Guo
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Baoxi Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Dezhi Yang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Han Zhang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
11
|
Liu Y, Zhu F, Wang Y, Yan D. High-efficiency crystalline white organic light-emitting diodes. LIGHT, SCIENCE & APPLICATIONS 2024; 13:86. [PMID: 38589356 PMCID: PMC11001915 DOI: 10.1038/s41377-024-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Crystalline white organic light-emitting diodes (C-WOLEDs) are promising candidates for lighting and display applications. It is urgently necessary, however, to develop energy-saving and high-efficiency C-WOLEDs that have stable and powerful emission to meet commercial demands. Here, we report a crystalline host matrix (CHM) with embedded nanoaggregates (NA) structure for developing high-performance C-WOLEDs by employing a thermally activated delayed fluorescence (TADF) material and orange phosphorescent dopants (Phos.-D). The CHM-TADFNA-D WOLED exhibit a remarkable EQE of 12.8%, which is the highest performance WOLEDs based on crystalline materials. The device has a quick formation of excitons and a well-designed energy transfer process, and possesses a fast ramping of luminance and current density. Compared to recently reported high-performance WOLEDs based on amorphous material route, the C-WOLED achieves a low series-resistance Joule-heat loss ratio and an enhanced photon output, demonstrating its significant potential in developing the next-generation WOLEDs.
Collapse
Affiliation(s)
- Yijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Donghang Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Dey S, Deka R, Upadhyay M, Peethambaran S, Ray D. White Light Emission via Dual Thermally Activated Delayed Fluorescence from a Single-Component Phenothiazines-Diphenyl Quinoline Conjugate. J Phys Chem Lett 2024; 15:3135-3141. [PMID: 38477646 DOI: 10.1021/acs.jpclett.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
White light emission (WLE) via dual thermally activated delayed fluorescence (TADF) from a single-component-based organic system remains challenging as a result of the difficulty in design. Here, we introduce a conformational isomerization approach to achieve WLE from a twisted donor-acceptor (PTzQP1) that comprises two phenothiazines covalently attached to the 6,8-isomeric positions of 2,4-diphenyl quinoline via two C-N single bonds. Spectroscopic studies and quantum chemistry calculations revealed that PTzQP1 shows WLE via simultaneous blue TADF and orange TADF covering the visible range (420-800 nm) with a photoluminescence quantum yield of 45 ± 2% and Commission Internationale de l'Éclairage (CIE) coordinates of 0.30, 0.33. The dual TADF features with high rates of reverse intersystem crossing (kRISC1 = 1.38 × 107 ± 0.24 s-1 and kRISC2 = 5.04 × 106 ± 0.32 s-1) are realized as a result of the low singlet-triplet gaps (S1EQ-T1EQ = 0.04 eV and S1QA-T1QA = 0.05 eV) of the quasi-axial (QA) and quasi-equatorial (QE) conformers. This finding is expected to provide a new direction for designing high-energy-efficient WLE emitters.
Collapse
Affiliation(s)
- Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sreerang Peethambaran
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
13
|
Liu Z, Chen J, Chen L, Liu H, Yang D, Ma D, Tang BZ, Zhao Z. Simultaneously Realizing High Efficiency and High Color Rendering Index for Hybrid White Organic Light-Emitting Diodes by Ultra-Thin Design of Delayed Fluorescence Sensitized Phosphorescent Layers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305589. [PMID: 37828633 DOI: 10.1002/smll.202305589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/25/2023] [Indexed: 10/14/2023]
Abstract
In consideration of energy economization and light quality, concurrently attaining high external quantum efficiency (ηext ) and high color rendering index (CRI) is of high significance for the commercialization of hybrid white organic light-emitting diodes (WOLEDs) but is challenging. Herein, a blue luminescent molecule (2PCz-XT) consisting of a xanthone acceptor and two 3,6-diphenylcarbazole donors is prepared, which exhibits strong delayed fluorescence, short delayed fluorescence lifetime, and excellent electroluminescence property, and can sensitize green, orange, and red phosphorescent emitters efficiently. By employing 2PCz-XT as sensitizer and phosphorescent emitters as dopants, efficient two-color and three-color WOLED architectures with ultra-thin phosphorescent emitting layers (EMLs) are proposed and constructed. By incorporating a thin interlayer to modulate exciton recombination zone and reduce exciton loss, high-performance three-color hybrid WOLEDs are finally achieved, providing a high ηext of 26.8% and a high CRI value 83 simultaneously. Further configuration optimization realizes a long device operational lifetime. These WOLEDs with ultra-thin phosphorescent EMLs are among the state-of-the-art hybrid WOLEDs in the literature, demonstrating the success and applicability of the proposed device design for developing robust hybrid WOLEDs with superb efficiency and color quality.
Collapse
Affiliation(s)
- Zhangshan Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
14
|
He X, Lou J, Li B, Dong X, Zhong F, Liu W, Feng X, Yang D, Ma D, Zhao Z, Wang Z, Tang BZ. Rational Medium-Range Charge Transfer Strategy Toward Highly Efficient Violet-Blue Organic Light-Emitting Diodes with Narrowed Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310417. [PMID: 37971674 DOI: 10.1002/adma.202310417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The spectral narrowing engineering of pure-organic emitters attracts great research interests in realizing high color purity. Here, the adjusted medium-range charge transfer (MCT) strategy of TIC-BO with rigid planar structure by fusing two typical UV-emitting multiple resonance (MR) fragments via the ingenious double-halide cyclized coupling reaction is reported. The resulting TIC-BO with MCT nature shows efficient violet-blue emission in dilute toluene and evaporated host-guest films, and desirably narrowed spectra are achieved by the suppression of structural relaxation and the shortened charge transfer states. The single-doped device with TIC-BO as emitter shows narrowed violet-blue electroluminescence peaked at 428 nm with full-width at half-maximum of 43 nm (0.28 eV), and the Commission Internationale de l'Éclairage coordinates of (0.160, 0.050). A maximum external quantum efficiency (EQEmax ) of 20.50% is achieved, which is among the best results of the corresponding violet-blue emitting region. Further introduction of a stronger electron-donating carbazole group makes TIC-BNO exhibit red-shifted sky-blue emission with MR-dominant properties, and good device performance is received with EQEmax of 34.58%. The outstanding performances of TIC-BO successfully demonstrate the significance and prospect of the proposed molecular design strategy.
Collapse
Affiliation(s)
- Xin He
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Jingli Lou
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Baoxi Li
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Xiaobin Dong
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Feiyang Zhong
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Dezhi Yang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Dongge Ma
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zujin Zhao
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
| | - Ben Zhong Tang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology (SCUT), Guangzhou, 510640, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
15
|
Hua J, Zhan Z, Cheng Z, Cao W, Chai Y, Wang X, Wei C, Dong H, Wang J. High-efficiency all-fluorescent white organic light-emitting diode based on TADF material as a sensitizer. RSC Adv 2023; 13:31632-31640. [PMID: 37908666 PMCID: PMC10614037 DOI: 10.1039/d3ra05680e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
The use of TADF materials as both sensitizers and emitters is a promising route to achieve high-efficiency all-fluorescent white organic light-emitting diodes (WOLEDs). In this study, the thermally-activated delayed-fluorescent (TADF) material DMAC-TRZ (9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine) was selected as a sensitizer for the conventional fluorescent emitter DCJTB (4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran), which was co-doped in a wide bandgap host of DPEPO (bis[2-(diphenylphosphino)phenyl]ether oxide) to fabricate WOLEDs. For the emitting layer of DPEPO:DMAC-TRZ:DCJTB, the DPEPO host can dilute the exciton concentration formed on the DMAC-TRZ sensitizer, which benefits the suppression of exciton quenching. The effect of the doping concentration of DCJTB on the carrier recombination and energy transfer process was investigated. With an optimized doping concentration of DCJTB as 0.8%, highly efficient WOLED was achieved with a maximum external quantum efficiency (EQE), power efficiency (PE), and current efficiency (CE) of 11.05%, 20.83 lm W-1, and 28.83 cd A-1, respectively, corresponding to the Commission Internationale de I' Eclairage (CIE) coordinates of (0.45, 0.46). These superior performances can be ascribed to the fact that the hole-trapping effect of the emitter and Dexter energy transfer (DET) from sensitizer to emitter can be suppressed simultaneously by the extremely low doping concentration.
Collapse
Affiliation(s)
- Jie Hua
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University Siping 136000 China
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Zhuolin Zhan
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Zeyuan Cheng
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Wanshan Cao
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Yuan Chai
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Xufeng Wang
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Chunyu Wei
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - He Dong
- College of Information Technology, Jilin Normal University Siping 136000 China
| | - Jin Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University Siping 136000 China
- College of Information Technology, Jilin Normal University Siping 136000 China
| |
Collapse
|
16
|
Zhang YB, Li YN, Zhang CF, Liu JB, Li JR, Bian HD, Zhu LQ, Ou JZ, Cui LS, Liu Y. High-efficiency all fluorescence white OLEDs with high color rendering index by manipulating excitons in co-host recombination layers. NANOSCALE 2023; 15:14249-14256. [PMID: 37602367 DOI: 10.1039/d3nr02568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
All fluorescence white organic light-emitting diodes (WOLEDs) based on thermally activated delayed fluorescence (TADF) emitters are an attractive route to realize highly efficient and high color quality white light sources. However, harvesting triplet excitons in these devices remains a formidable challenge, particularly for WOLEDs involving conventional fluorescent emitters. Herein, we report a universal design strategy based on a co-host system and a cascaded exciton transfer configuration. The co-host system furnishes a broad and charge-balanced exciton generation zone, which simultaneously endows the devices with low efficiency roll-off and good color stability. A yellow TADF layer is put forward as an intermediate sensitizer layer between the blue TADF light-emitting layer (EML) and the red fluorescence EML, which not only constructs an efficient cascaded Förster energy transfer route but also blocks the triplet exciton loss channel through Dexter energy transfer. With the proposed design strategy, three-color all fluorescence WOLEDs reach a maximum external quantum efficiency (EQE) of 22.4% with a remarkable color rendering index (CRI) of 92 and CIE coordinates of (0.37, 0.40). Detailed optical simulation confirms the high exciton utilization efficiency. Finally, by introducing an efficient blue emitter 5Cz-TRZ, a maximum EQE of 30.1% is achieved with CIE coordinates of (0.42, 0.42) and a CRI of 84 at 1000 cd m-2. These outstanding results demonstrate the great potential of all fluorescence WOLEDs in solid-state lighting and display panels.
Collapse
Affiliation(s)
- Yuan-Bo Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Ya-Nan Li
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Chun-Fang Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Jia-Bo Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Jia-Rui Li
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Hao-Dong Bian
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Lian-Qing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| | - Jian-Zhen Ou
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 xiaoying East Road, Beijing, 100192, China.
| |
Collapse
|
17
|
Wu ZL, Lv X, Meng LY, Chen XL, Lu CZ. Tröger's Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes. Molecules 2023; 28:4832. [PMID: 37375387 DOI: 10.3390/molecules28124832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The development of efficient deep-blue emitters with thermally activated delayed fluorescence (TADF) properties is a highly significant but challenging task in the field of organic light-emitting diode (OLED) applications. Herein, we report the design and synthesis of two new 4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine (TB)-derived TADF emitters, TB-BP-DMAC and TB-DMAC, which feature distinct benzophenone (BP)-derived acceptors but share the same dimethylacridin (DMAC) donors. Our comparative study reveals that the amide acceptor in TB-DMAC exhibits a significantly weaker electron-withdrawing ability in comparison to that of the typical benzophenone acceptor employed in TB-BP-DMAC. This disparity not only causes a noticeable blue shift in the emission from green to deep blue but also enhances the emission efficiency and the reverse intersystem crossing (RISC) process. As a result, TB-DMAC emits efficient deep-blue delay fluorescence with a photoluminescence quantum yield (PLQY) of 50.4% and a short lifetime of 2.28 μs in doped film. The doped and non-doped OLEDs based on TB-DMAC display efficient deep-blue electroluminescence with spectral peaks at 449 and 453 nm and maximum external quantum efficiencies (EQEs) of 6.1% and 5.7%, respectively. These findings indicate that substituted amide acceptors are a viable option for the design of high-performance deep-blue TADF materials.
Collapse
Affiliation(s)
- Ze-Ling Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lv
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ling-Yi Meng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xu-Lin Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Can-Zhong Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Liu H, Fu Y, Chen J, Tang BZ, Zhao Z. Energy-Efficient Stable Hyperfluorescence Organic Light-Emitting Diodes with Improved Color Purities and Ultrahigh Power Efficiencies Based on Low-Polar Sensitizing Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212237. [PMID: 36893769 DOI: 10.1002/adma.202212237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Indexed: 06/02/2023]
Abstract
Multi-resonance (MR) molecules with thermally activated delayed fluorescence (TADF) are emerging as promising candidates for high-definition displays because of their narrow emission spectra. However, the electroluminescence (EL) efficiencies and spectra of MR-TADF molecules are highly sensitive to hosts and sensitizers when applied to organic light-emitting diodes (OLEDs), and the highly polar environments in devices often lead to significantly broadened EL spectra. In this study, a proof-of-concept TADF sensitizer (BTDMAC-XT) with low polarity, high steric hindrance, and concentration-quenching free feature is constructed, which acts as a good emitter in doped and non-doped OLEDs with high external quantum efficiencies (ηext s) of 26.7% and 29.3%, respectively. By combining BTDMAC-XT with conventional low-polarity hosts, low-polarity sensitizing systems with a small carrier injection barrier and full exciton utilization are constructed for the MR-TADF molecule BN2. Hyperfluorescence (HF) OLEDs employing the low-polar sensitizing systems successfully improve the color quality of BN2 and afford an excellent ηext of 34.4%, a record-high power efficiency of 166.3 lm W-1 and a long operational lifetime (LT50 = 40309 h) at an initial luminance of 100 cd m-2 . These results provide instructive guidance for the sensitizer design and device optimization for energy-efficient and stable HF-OLEDs with high-quality light.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Jinke Chen
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
19
|
Fu Y, Liu H, Tang BZ, Zhao Z. Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4. Nat Commun 2023; 14:2019. [PMID: 37037820 PMCID: PMC10086064 DOI: 10.1038/s41467-023-37687-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
As promising luminescent materials for organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence materials are booming vigorously in recent years, but robust blue ones still remain challenging. Herein, we report three highly efficient blue and deep-blue delayed fluorescence materials comprised of a weak electron acceptor chromeno[3,2-c]carbazol-8(5H)-one with a rigid polycyclic structure and a weak electron donor spiro[acridine-9,9'-xanthene]. They hold distinguished merits of excellent photoluminescence quantum yields (99%), ultrahigh horizontal transition dipole ratios (93.6%), and fast radiative transition and reverse intersystem crossing, which furnish superb blue and deep-blue electroluminescence with Commission Internationale de I'Eclairage coordinates (CIEx,y) of (0.14, 0.18) and (0.14, 0.15) and record-beating external quantum efficiencies (ηexts) of 43.4% and 41.3%, respectively. Their efficiency roll-offs are successfully reduced by suppressing triplet-triplet and singlet-singlet annihilations. Moreover, high-performance deep-blue and green hyperfluorescence OLEDs are achieved by utilizing these materials as sensitizers for multi-resonance delayed fluorescence dopants, providing state-of-the-art ηexts of 32.5% (CIEx,y = 0.14, 0.10) and 37.6% (CIEx,y = 0.32, 0.64), respectively, as well as greatly advanced operational lifetimes. These splendid results can surely inspire the development of blue and deep-blue luminescent materials and devices.
Collapse
Affiliation(s)
- Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
20
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|