1
|
Passet M, Kim R, Clappier E. Genetic subtypes of B-cell acute lymphoblastic leukemia in adults. Blood 2025; 145:1451-1463. [PMID: 39786374 DOI: 10.1182/blood.2023022919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT B-cell acute lymphoblastic leukemia (B-ALL) is a rare malignancy in adults, with outcomes remaining poor, especially compared with children. Over the past 2 decades, extensive whole-genome studies have identified numerous genetic alterations driving leukemia, leading to the recognition of >20 distinct subtypes that are closely associated with treatment response and prognosis. In pediatric B-ALL, large correlation studies have made genetic classification a central component of risk-adapted treatment strategies. Notably, genetic subtypes are unevenly distributed according to age, and the spectrum of genetic alterations and their prognostic relevance in adult B-ALL have been less extensively studied, with treatment primarily based on the presence or absence of BCR::ABL1 fusion. This review provides an overview of genetic subtypes in adult B-ALL, including recent biological and clinical insights in well-established subtypes as well as data on newly recognized subtypes. Their relevance for risk classification, disease monitoring, and therapeutic management, including in the context of B-cell-directed therapies, is discussed. This review advocates for continuing efforts to further improve our understanding of the biology of adult B-ALL to establish the foundation of future precision medicine in B-ALL.
Collapse
Affiliation(s)
- Marie Passet
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis, Université Paris Cité, INSERM UMR1342, Paris, France
- Service d'Hématologie Biologique, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
2
|
Tremblay CS, Saw J, Yan F, Boyle JA, Amarasinghe O, Abdollahi S, Vo ANQ, Shields BJ, Mayoh C, McCalmont H, Evans K, Steiner A, Parsons K, McCormack MP, Powell DR, Wong NC, Jane SM, Lock RB, Curtis DJ. Targeting LMO2-induced autocrine FLT3 signaling to overcome chemoresistance in early T-cell precursor acute lymphoblastic leukemia. Leukemia 2025; 39:577-589. [PMID: 39849166 PMCID: PMC11879882 DOI: 10.1038/s41375-024-02491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025]
Abstract
Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3. Despite a highly proliferative state, these FLT3-overexpressing cells had long-term self-renewal capacity and almost complete resistance to chemotherapy. Chromatin immunoprecipitation and assay for transposase-accessible chromatin sequencing demonstrated FLT3 and its ligand may be direct targets of the LMO2 stem-cell complex. Media conditioned by Lmo2 transgenic thymocytes revealed an autocrine FLT3-dependent signaling loop that could be targeted by the FLT3 inhibitor gilteritinib. Consequently, gilteritinib impaired in vivo growth of ETP-ALL and improved the sensitivity to chemotherapy. Furthermore, gilteritinib enhanced response to the BCL2 inhibitor venetoclax, which may enable "chemo-free" treatment of ETP-ALL. Together, these data provide a cellular and molecular explanation for enhanced cytokine signaling in LMO2-driven ETP-ALL beyond activating mutations and a rationale for clinical trials of FLT3 inhibitors in ETP-ALL.
Collapse
Affiliation(s)
- Cedric S Tremblay
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB, Canada.
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Jesslyn Saw
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Feng Yan
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute (WEHI) of Medical Research, Parkville, VIC, Australia
| | - Jacqueline A Boyle
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Ovini Amarasinghe
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
| | - Shokoufeh Abdollahi
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Anh N Q Vo
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Benjamin J Shields
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Anna Steiner
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, MB, Canada
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Women in Lymphoma, Lymphoma Australia, Brisbane, QLD, Australia
| | - Kevin Parsons
- Community and Researcher Engagement (CaRE) program, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Matthew P McCormack
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Nicholas C Wong
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | - Stephen M Jane
- Department of Medicine, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - David J Curtis
- Australian Centre for Blood Diseases (ACBD), School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, Alfred Hospital, Prahran, VIC, Australia
| |
Collapse
|
3
|
Yamada C, Okada K, Odaira K, Tokoro M, Iwamoto E, Sanada M, Noura M, Okamoto S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. RGS1 and CREB5 are direct and common transcriptional targets of ZNF384-fusion proteins. Cancer Med 2024; 13:e7471. [PMID: 39015025 PMCID: PMC11252495 DOI: 10.1002/cam4.7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.
Collapse
Affiliation(s)
- Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Okada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Eisuke Iwamoto
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Syuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
4
|
Hou Z, Ren Y, Zhang X, Huang D, Yan F, Sun W, Zhang W, Zhang Q, Fu X, Lang Z, Chu C, Zou B, Gao B, Jin B, Kang Z, Liu Q, Yan J. EP300-ZNF384 transactivates IL3RA to promote the progression of B-cell acute lymphoblastic leukemia. Cell Commun Signal 2024; 22:211. [PMID: 38566191 PMCID: PMC10986138 DOI: 10.1186/s12964-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5. Conditional knockdown of IL3RA in EP300-ZF384-positive cells inhibited the proliferation in vitro, and induced a significant increase in overall survival of mice, which is attributed to impaired propagation ability of leukemia cells. Mechanistically, the EP300-ZNF384 fusion protein transactivates the promoter activity of IL3RA by binding to an A-rich sequence localized at -222/-234 of IL3RA. Furthermore, forced EP300-ZNF384 expression induces the expression of IL3Rα on cell membranes and the secretion of IL-3 in CD19-positive B precursor cells derived from healthy individuals. Doxorubicin displayed a selective killing of EP300-ZNF384-positive B-ALL cells in vitro and in vivo. Collectively, we identify IL3RA as a direct downstream target of EP300-ZNF384, suggesting CD123 is a potent biomarker for EP300-ZNF384-driven B-ALL. Targeting CD123 may be a novel therapeutic approach to EP300-ZNF384-positive patients, alternative or, more likely, complementary to standard chemotherapy regimen in clinical setting.
Collapse
Affiliation(s)
- Zhijie Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Yifei Ren
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Fanzhi Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Wentao Sun
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Wenjuan Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Xihui Fu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhenghui Lang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Chenyang Chu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Boyang Zou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Beibei Gao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China
| | - Zhijie Kang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian Key Laboratory of hematology, Diamond Bay institute of hematology, Blood Stem Cell Transplantation Institute, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
- Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
5
|
Gutierrez-Camino A, Richer C, Ouimet M, Fuchs C, Langlois S, Khater F, Caron M, Beaulieu P, St-Onge P, Bataille AR, Sinnett D. Characterisation of FLT3 alterations in childhood acute lymphoblastic leukaemia. Br J Cancer 2024; 130:317-326. [PMID: 38049555 PMCID: PMC10803556 DOI: 10.1038/s41416-023-02511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Alterations of FLT3 are among the most common driver events in acute leukaemia with important clinical implications, since it allows patient classification into prognostic groups and the possibility of personalising therapy thanks to the availability of FLT3 inhibitors. Most of the knowledge on FLT3 implications comes from the study of acute myeloid leukaemia and so far, few studies have been performed in other leukaemias. METHODS A comprehensive genomic (DNA-seq in 267 patients) and transcriptomic (RNA-seq in 160 patients) analysis of FLT3 in 342 childhood acute lymphoblastic leukaemia (ALL) patients was performed. Mutations were functionally characterised by in vitro experiments. RESULTS Point mutations (PM) and internal tandem duplications (ITD) were detected in 4.3% and 2.7% of the patients, respectively. A new activating mutation of the TKD, G846D, conferred oncogenic properties and sorafenib resistance. Moreover, a novel alteration involving the circularisation of read-through transcripts (rt-circRNAs) was observed in 10% of the cases. Patients presenting FLT3 alterations exhibited higher levels of the receptor. In addition, patients with ZNF384- and MLL/KMT2A-rearranged ALL, as well as hyperdiploid subtype, overexpressed FLT3. DISCUSSION Our results suggest that specific ALL subgroups may also benefit from a deeper understanding of the biology of FLT3 alterations and their clinical implications.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Manon Ouimet
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Claire Fuchs
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sylvie Langlois
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Fida Khater
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Maxime Caron
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Patrick Beaulieu
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Alain R Bataille
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
De Sa H, Leonard J. Novel Biomarkers and Molecular Targets in ALL. Curr Hematol Malig Rep 2024; 19:18-34. [PMID: 38048037 DOI: 10.1007/s11899-023-00718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE OF REVIEW Acute lymphoblastic leukemia (ALL) is a widely heterogeneous disease in terms of genomic alterations, treatment options, and prognosis. While ALL is considered largely curable in children, adults tend to have higher risk disease subtypes and do not respond as favorably to conventional chemotherapy. Identifying genomic drivers of leukemogenesis and applying targeted therapies in an effort to improve disease outcomes is an exciting focus of current ALL research. Here, we review recent updates in ALL targeted therapy and present promising opportunities for future research. RECENT FINDINGS With the utilization of next-generation sequencing techniques, the genomic landscape of ALL has greatly expanded to encompass novel subtypes characterized by recurrent chromosomal rearrangements, gene fusions, sequence mutations, and distinct gene expression profiles. The evolution of small molecule inhibitors and immunotherapies, and the exploration of unique therapy combinations are some examples of recent advancements in the field. Targeted therapies are becoming increasingly important in the treatment landscape of ALL to improve outcomes and minimize toxicity. Significant recent advancements have been made in the detection of susceptible genomic drivers and the use of novel therapies to target them.
Collapse
Affiliation(s)
- Hong De Sa
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA
| | - Jessica Leonard
- OHSU Center for Health and Healing, Oregon Health & Science University, 3485 S Bond Ave, Mail Code OC14HO, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Yin H, Wang J, Tan Y, Jiang M, Zhang H, Meng G. Transcription factor abnormalities in B-ALL leukemogenesis and treatment. Trends Cancer 2023; 9:855-870. [PMID: 37407363 DOI: 10.1016/j.trecan.2023.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
The biological regulation of transcription factors (TFs) and repressor proteins is an important mechanism for maintaining cell homeostasis. In B cell acute lymphoblastic leukemia (B-ALL) TF abnormalities occur at high frequency and are often recognized as the major driving factor in carcinogenesis. We provide an in-depth review of molecular mechanisms of six major TF rearrangements in B-ALL, including DUX4-rearranged (DUX4-R), MEF2D-R, ZNF384-R, ETV6-RUNX1 and TCF3-PBX1 fusions, and KMT2A-R. In addition, the therapeutic options and prognoses for patients who harbor these TF abnormalities are discussed. This review aims to provide an up-to-date panoramic view of how TF-based oncogenic fusions might drive carcinogenesis and impact on potential therapeutic exploration of B-ALL treatments.
Collapse
Affiliation(s)
- Hongxin Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Junfei Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Minghao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Hao Zhang
- Institute for Translational Brain Research, Ministry of Education (MOE) Frontiers Center for Brain Science, Fudan University, 200032 Shanghai, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
8
|
Xu F, Yang X, Xue L, Zhang P, Chong T, Sun Y. Clinical significance and biofunction of ZNF384 in renal cell carcinoma discovered by data mining and experimentation. Hum Cell 2023; 36:1214-1217. [PMID: 36882592 DOI: 10.1007/s13577-023-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Affiliation(s)
- Fangshi Xu
- Department of Urology, Shaanxi Provincial People's Hospital, No. 256, Friendship West Road, Xi'an, 710068, Shaanxi, China
| | - XiaoJie Yang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Li Xue
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Peng Zhang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Tie Chong
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Yi Sun
- Department of Urology, Shaanxi Provincial People's Hospital, No. 256, Friendship West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|