1
|
Ahi EP, Panda B, Primmer CR. The hippo pathway: a molecular bridge between environmental cues and pace of life. BMC Ecol Evol 2025; 25:35. [PMID: 40275190 PMCID: PMC12020181 DOI: 10.1186/s12862-025-02378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The pace of life (POL) is shaped by a complex interplay between genetic and environmental factors, influencing growth, maturation, and lifespan across species. The Hippo signaling pathway, a key regulator of organ size and cellular homeostasis, has emerged as a central integrator of environmental cues that modulate POL traits. In this review, we explore how the Hippo pathway links environmental factors-such as temperature fluctuations and dietary energy availability-to molecular mechanisms governing metabolic balance, hormonal signaling, and reproductive timing. Specifically, we highlight the regulatory interactions between the Hippo pathway and metabolic sensors (AMPK, mTOR, SIRT1 and DLK1-Notch), as well as hormonal signals (IGF-1, kisspeptin, leptin, cortisol, thyroid and sex steroids), which together orchestrate key life-history traits, including growth rates, lifespan and sexual maturation, with a particular emphasis on their role in reproductive timing. Furthermore, we consider its role as a potential coordinator of POL-related molecular processes, such as telomere dynamics and epigenetic mechanisms, within a broader regulatory network. By integrating insights from molecular biology and eco-evolutionary perspectives, we propose future directions to dissect the Hippo pathway's role in POL regulation across taxa. Understanding these interactions will provide new perspectives on how organisms adaptively adjust life-history strategies in response to environmental variability.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland.
| | - Bineet Panda
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Liu R, Qin H, Wang Q, Chu C, Jiang Y, Deng H, Han C, Zhong W. Transcriptome analysis of nitrogen assimilation preferences in Burkholderia sp. M6-3 and Arthrobacter sp. M7-15. Front Microbiol 2025; 16:1559884. [PMID: 40260088 PMCID: PMC12010642 DOI: 10.3389/fmicb.2025.1559884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Ammonium (NH4 +) and nitrate (NO3 -) are the two main forms of inorganic nitrogen (N) that exist in soil and both can be absorbed and utilized by plants. As a vast and crucial biome, soil microorganisms are responsible for mediating the inorganic N assimilation process and enhancing nitrogen use efficiency. Understanding how these microorganisms assimilate different forms of inorganic nitrogen is crucial. There are a handful of microorganisms that play a dominant role in the process of soil inorganic nitrogen assimilation and have a significant advantage in abundance. However, microbial preferences for ammonium or nitrate, as well as differences in their metabolic pathways under co-existing ammonium and nitrate conditions, remain unclear. Methods In this study, two microbial strains with nitrogen assimilation advantages, Burkholderia sp. M6-3 and Arthrobacter sp. M7-15 were isolated from an acidic Chinese soil and then incubated by different sources of inorganic N to investigate their N preferences. Furthermore, RNA sequencing-based transcriptome analysis was used to map the metabolic pathways of the two strains and explore their explanatory potential for N preferences. Results The results showed that strain M6-3 preferred to utilize NH4 + while strain M7-15 preferred to utilize NO3 -. Although both strains shared similar nitrogen metabolic pathways, the differential expression of the glutamine synthetase-coding gene glnA played a crucial role in regulating their inorganic N preferences. This inconsistency in glnA expression may be attributed to GlnR, a global regulator of nitrogen utilization. Discussion This research strengthens the theoretical basis for exploring the underlying causes of differential preferences for inorganic N forms and provided key clues for screening functional microorganisms to ultimately enhance inorganic nitrogen use efficiency.
Collapse
Affiliation(s)
- Ran Liu
- College of Zhongbei, Nanjing Normal University, Danyang, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Hongyi Qin
- College of Zhongbei, Nanjing Normal University, Danyang, Jiangsu, China
| | - Qian Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Cheng Chu
- College of Zhongbei, Nanjing Normal University, Danyang, Jiangsu, China
| | - Yunbin Jiang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Huan Deng
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Cheng Han
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Wenhui Zhong
- College of Zhongbei, Nanjing Normal University, Danyang, Jiangsu, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geographical Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
3
|
Yoneshiro T, Matsushita M, Fuse-Hamaoka S, Kuroiwa M, Kurosawa Y, Yamada Y, Arai M, Wei Y, Iida M, Kuma K, Kameya T, Harada T, Matsumura Y, Osawa T, Aoki Y, Nakamura H, Hamaoka T, Sakai J, Saito M. Pre-fertilization-origin preservation of brown fat-mediated energy expenditure in humans. Nat Metab 2025; 7:778-791. [PMID: 40195445 DOI: 10.1038/s42255-025-01249-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/18/2025] [Indexed: 04/09/2025]
Abstract
Environmental thermal stress substantially affects cellular plasticity of thermogenic adipocytes and energy balance through transcriptional and epigenetic mechanisms in rodents. However, roles of cold-adaptive epigenetic regulation of brown adipose tissue (BAT) in systemic energy metabolism in humans remained poorly understood. Here we report that individuals whose mothers conceived during cold seasons exhibit higher BAT activity, adaptive thermogenesis, increased daily total energy expenditure and lower body mass index and visceral fat accumulation. Structural equation modelling indicated that conception during the cold season protects against age-associated increase in body mass index through BAT activation in offspring. Meteorological analysis revealed that lower outdoor temperatures and greater fluctuations in daily temperatures during the fertilization period are key determinants of BAT activity. These findings suggest that BAT metabolic fate and susceptibility of metabolic diseases are preprogrammed by the epigenetic inheritance of cold exposure before the fertilization in humans.
Collapse
Affiliation(s)
- Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan.
| | - Mami Matsushita
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Yosuke Yamada
- Sports and Health Sciences, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Arai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Yuchen Wei
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| | - Makoto Iida
- Academic-Industrial Joint Laboratory for Renewable Energy, RCAST, The University of Tokyo, Tokyo, Japan
| | - Kenichi Kuma
- Climate Science Research Laboratory, RCAST, The University of Tokyo, Tokyo, Japan
| | | | | | - Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Aoki
- Faculty of Education, Bukkyo University, Kyoto, Japan
- Faculty of Health and Medical Sciences, Kyoto University of Advanced Science, Kyoto, Japan
| | - Hisashi Nakamura
- Climate Science Research Laboratory, RCAST, The University of Tokyo, Tokyo, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan.
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan.
| | - Masayuki Saito
- Department of Nutrition, School of Nursing and Nutrition, Tenshi College, Sapporo, Japan.
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
4
|
Wang Y, Jiang ZH, Zhou YW, Qiu TT, Wang H, Zhu MS, Chen X, Zhang XN. Gallbladder dysfunction caused by MYPT1 ablation triggers cholestasis-induced hepatic fibrosis in mice. Hepatol Commun 2024; 8:e0473. [PMID: 38934703 PMCID: PMC11213606 DOI: 10.1097/hc9.0000000000000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The incidence of gallbladder diseases is as high as 20%, but whether gallbladder diseases contribute to hepatic disorders remains unknown. METHODS Here, we established an animal model of gallbladder dysfunction and assessed the role of a diseased gallbladder in cholestasis-induced hepatic fibrosis (CIHF). RESULTS Mice with smooth muscle-specific deletion of Mypt1, the gene encoding the main regulatory subunit of myosin light chain phosphatase (myosin phosphatase target subunit 1 [MYPT1]), had apparent dysfunction of gallbladder motility. This dysfunction was evidenced by abnormal contractile responses, namely, inhibited cholecystokinin 8-mediated contraction and nitric oxide-resistant relaxation. As a consequence, the gallbladder displayed impaired bile filling and biliary tract dilation comparable to the alterations in CIHF. Interestingly, the mutant animals also displayed CIHF features, including necrotic loci by the age of 1 month and subsequently exhibited progressive fibrosis and hyperplastic/dilated bile ducts. This pathological progression was similar to the phenotypes of the animal model with bile duct ligation and patients with CIHF. The characteristic biomarker of CIHF, serum alkaline phosphatase activity, was also elevated in the mice. Moreover, we observed that the myosin phosphatase target subunit 1 protein level was able to be regulated by several reagents, including lipopolysaccharide, exemplifying the risk factors for gallbladder dysfunction and hence CIHF. CONCLUSIONS We propose that gallbladder dysfunction caused by myosin phosphatase target subunit 1 ablation is sufficient to induce CIHF in mice, resulting in impairment of the bile transport system.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Yu-Wei Zhou
- Jiangsu Key Laboratory of Molecular Medicine, Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tian-Tian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Han Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Xue-Na Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Jinling Pharmaceutical Co., Ltd., Nanjing, China
| |
Collapse
|
5
|
Peng Y, Zhao L, Li M, Liu Y, Shi Y, Zhang J. Plasticity of Adipose Tissues: Interconversion among White, Brown, and Beige Fat and Its Role in Energy Homeostasis. Biomolecules 2024; 14:483. [PMID: 38672499 PMCID: PMC11048349 DOI: 10.3390/biom14040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity, characterized by the excessive accumulation of adipose tissue, has emerged as a major public health concern worldwide. To develop effective strategies for treating obesity, it is essential to comprehend the biological properties of different adipose tissue types and their respective roles in maintaining energy balance. Adipose tissue serves as a crucial organ for energy storage and metabolism in the human body, with functions extending beyond simple fat storage to encompass the regulation of energy homeostasis and the secretion of endocrine factors. This review provides an overview of the key characteristics, functional differences, and interconversion processes among white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue. Moreover, it delves into the molecular mechanisms and recent research advancements concerning the browning of WAT, activation of BAT, and whitening of BAT. Although targeting adipose tissue metabolism holds promise as a potential approach for obesity treatment, further investigations are necessary to unravel the intricate biological features of various adipose tissue types and elucidate the molecular pathways governing their interconversion. Such research endeavors will pave the way for the development of more efficient and targeted therapeutic interventions in the fight against obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Zhang
- School of Bioengineering, Zunyi Medical University, Zhuhai 519000, China; (Y.P.); (L.Z.); (M.L.); (Y.L.); (Y.S.)
| |
Collapse
|
6
|
Takahashi H, Ito R, Matsumura Y, Sakai J. Environmental factor reversibly determines cellular identity through opposing Integrators that unify epigenetic and transcriptional pathways. Bioessays 2024; 46:e2300084. [PMID: 38013256 DOI: 10.1002/bies.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Organisms must adapt to environmental stresses to ensure their survival and prosperity. Different types of stresses, including thermal, mechanical, and hypoxic stresses, can alter the cellular state that accompanies changes in gene expression but not the cellular identity determined by a chromatin state that remains stable throughout life. Some tissues, such as adipose tissue, demonstrate remarkable plasticity and adaptability in response to environmental cues, enabling reversible cellular identity changes; however, the mechanisms underlying these changes are not well understood. We hypothesized that positive and/or negative "Integrators" sense environmental cues and coordinate the epigenetic and transcriptional pathways required for changes in cellular identity. Adverse environmental factors such as pollution disrupt the coordinated control contributing to disease development. Further research based on this hypothesis will reveal how organisms adapt to fluctuating environmental conditions, such as temperature, extracellular matrix stiffness, oxygen, cytokines, and hormonal cues by changing their cellular identities.
Collapse
Grants
- JP20gm1310007 Japan Agency for Medical Research and Development
- JP16H06390 Ministry of Education, Culture, Sports, Science and Technology
- JP21H04826 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04835 Ministry of Education, Culture, Sports, Science and Technology
- JP20K21747 Ministry of Education, Culture, Sports, Science and Technology
- JP22K18411 Ministry of Education, Culture, Sports, Science and Technology
- JP21K21211 Ministry of Education, Culture, Sports, Science and Technology
- JP19J11909 Ministry of Education, Culture, Sports, Science and Technology
- JPMJPF2013 Japan Science and Technology Agency
Collapse
Affiliation(s)
- Hiroki Takahashi
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Matsumura Y, Osborne TF, Ito R, Takahashi H, Sakai J. β-Adrenergic Signal and Epigenomic Regulatory Process for Adaptive Thermogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:213-227. [PMID: 39289284 DOI: 10.1007/978-981-97-4584-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Activation of β-adrenergic (β-AR) signaling induces fight-or-flight stress responses which include enhancement of cardiopulmonary function, metabolic regulation, and muscle contraction. Classical dogma for β-AR signaling has dictated that the receptor-mediated response results in an acute and transient signal. However, more recent studies support more wide-ranging roles for β-AR signaling with long-term effects including cell differentiation that requires precisely timed and coordinated integration of many signaling pathways that culminate in precise epigenomic chromatin modifications. In this chapter, we discuss cold stress/β-AR signaling-induced epigenomic changes in adipose tissues that influence adaptive thermogenesis. We highlight recent studies showing dual roles for the histone demethylase JMJD1A as a mediator of both acute and chronic thermogenic responses to cold stress, in two distinct thermogenic tissues, and through two distinct molecular mechanisms. β-AR signaling not only functions through transient signals during acute stress responses but also relays a more sustained signal to long-term adaptation to environmental changes.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Timothy F Osborne
- Institute for Fundamental Biomedical Research Division of Endocrinology, Diabetes and Metabolism Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Takahashi
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
8
|
Abstract
While epigenetic modifications of DNA and histones play main roles in gene transcription regulation, recently discovered post-transcriptional RNA modifications, known as epitranscriptomic modifications, have been found to have a profound impact on gene expression by regulating RNA stability, localization and decoding efficiency. Importantly, genetic variations or environmental perturbations of epitranscriptome modifiers (that is, writers, erasers and readers) are associated with obesity and metabolic diseases, such as type 2 diabetes. The epitranscriptome is closely coupled to epigenetic signalling, adding complexity to our understanding of gene expression in both health and disease. Moreover, the epitranscriptome in the parental generation can affect organismal phenotypes in the next generation. In this Review, we discuss the relationship between epitranscriptomic modifications and metabolic diseases, their relationship with the epigenome and possible therapeutic strategies.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|