1
|
Tian W, Luo Y, Zhu S, Zhou Y, He C, Ma X. Efficient synergistic photocatalysis of supported Ir/Pd dual metal catalysts based on flexible polymeric brushes. Dalton Trans 2025; 54:8055-8060. [PMID: 40343774 DOI: 10.1039/d5dt00593k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Dual metal complexes, Pd(PPh3)4 and Ir(ppy)2(dtbbpy)PF6, are simultaneously anchored onto SiO2-grafted poly(4-vinyl benzyl chloride) (PVBC) brushes via Friedel-Crafts alkylation in one pot, affording supported dual Pd/Ir complexes which gave good yields in photocatalytic α-allylation.
Collapse
Affiliation(s)
- Wenyan Tian
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yongyue Luo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Siwen Zhu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yang Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Chuangchuang He
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Han H, Yi W, Ding S, Ren X, Zhao B. Enantioselective Three-Component α-Allylic Alkylation of α-Amino Esters by Synergistic Photoinduced Pd/Carbonyl Catalysis. Angew Chem Int Ed Engl 2025; 64:e202418910. [PMID: 39551702 DOI: 10.1002/anie.202418910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/19/2024]
Abstract
Photoinduced excited-state Pd catalysis has emerged as an intriguing strategy for unlocking new reactivity potential of simple substrates. However, the related transformations are still limited and the enantiocontrol remains challenging. Organocatalysis displays unique capability in substrate activation and stereocontrol. Combination of organocatalysis and photoinduced excited-state Pd catalysis may provide opportunities to develop new enantioselective reactions from simple substrates. By applying cooperative triple catalysis including excited-state Pd catalysis, ground-state Pd catalysis, and carbonyl catalysis, we have successfully realized enantioselective α-allylic alkylation of α-amino esters with simple styrene and alkyl halide starting materials. The reaction allows rapid modular assembly of the three reaction partners into a variety of chiral quaternary α-amino esters in good yields with 90-99 % ee, without protecting group manipulations at the active NH2 group. The cooperation of the chiral pyridoxal catalyst and the chiral phosphine ligand accounts for the excellent chirality induction.
Collapse
Affiliation(s)
- Haohao Han
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Wuqi Yi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shaojie Ding
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyi Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
3
|
Lux DM, Lee DJ, Sapkota RR, Giri R. Iron-Mediated Dialkylation of Alkenylarenes with Benzyl Bromides. J Org Chem 2024; 89:16292-16299. [PMID: 38572911 PMCID: PMC11450104 DOI: 10.1021/acs.joc.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We disclose a method for the dibenzylation of alkenylarenes with benzyl bromides using iron powder. This reaction generates branched alkyl scaffolds adorned with functionalized aryl rings through the formation of two new C(sp3)-C(sp3) bonds at the vicinal carbons of alkenes. This protocol tolerates electron-rich, electron-neutral, and electron-poor benzyl bromides and alkenylarenes. Mechanistic studies suggest the formation of benzylic radical intermediates as a result of single-electron transfer from the iron, which is intercepted by alkenylarenes.
Collapse
Affiliation(s)
- Daniel M Lux
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Lee
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Li M, Wu Y, Song X, Sun J, Zhang Z, Zheng G, Zhang Q. Visible light-mediated organocatalyzed 1,3-aminoacylation of cyclopropane employing N-benzoyl saccharin as bifunctional reagent. Nat Commun 2024; 15:8930. [PMID: 39414792 PMCID: PMC11484876 DOI: 10.1038/s41467-024-53202-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The carboamination of unsaturated molecules using bifunctional reagents is considered an attractive approach for the synthesis of nitrogen-containing compounds. However, bifunctional C-N reagents have never been employed in the carboamination of cyclopropane. In this study, we use an N-heterocyclic carbene (NHC), N-benzoyl saccharin, as a bifunctional reagent and a photoredox catalyst for a dual-catalyzed 1,3-aminoacylation of cyclopropane. NHCs play multiple roles, functioning as Lewis base catalysts to activate C-N bonds, promoting the oxidative quenching process of PC*, and acting as efficient acyl radical transfer catalysts for the formation of C-C bonds. The oxidative quenching process between the excited-state PC* and acyl NHC adduct is the key to the photooxidation generality of aryl cyclopropanes.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yingtao Wu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Xiao Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jiaqiong Sun
- Department of Chemistry, Northeast Normal University, Changchun, China.
- School of Environment, Northeast Normal University, Changchun, China.
| | - Zuxiao Zhang
- Department of Chemistry, University of Hawai'i at Mānoa. 2545 McCarthy Mall, Honolulu, HI, USA
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu, Shanghai, China
| |
Collapse
|
5
|
Tu T, Nie G, Zhang T, Hu C, Ren SC, Xia H, Chi YR. Carbene and photocatalyst-catalyzed 3-acylation of indoles for facile access to indole-3-yl aryl ketones. Chem Commun (Camb) 2024; 60:11088-11091. [PMID: 39268688 DOI: 10.1039/d4cc03257h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
3-Acyl indoles play important roles in both organic synthesis and diverse types of functional molecules. Herein, a facile nitrogen heterocyclic carbene (NHC) and photocatalyst cooperatively-catalyzed 3-acylation of indoles was disclosed. The reaction proceeded via radical cross-coupling of indole-based aryl radical cations with NHC-bound ketyl radical species, which are less explored in radical NHC catalysis. The reaction exhibits mild reaction conditions, broad substrate scope, and good functional group tolerance. Mechanistic studies support our proposed reaction pathway. The synthesis of structurally diverse analogs of an aldose reductase inhibitor and antibacterial activity investigation further demonstrated the utility of the current acylation reaction.
Collapse
Affiliation(s)
- Ting Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - GuiHua Nie
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Tinglei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - ChunMei Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Shi-Chao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Huimin Xia
- School of Pharmaceutical Science, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|
6
|
Zhang ZF, Zhang CL, Ye S. N-Heterocyclic Carbene/Transition Metal Dual Catalysis. Chemistry 2024; 30:e202402259. [PMID: 39013831 DOI: 10.1002/chem.202402259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
N-heterocyclic carbene catalysis has been developed as a versatile method for the enantioselective synthesis of complex organic molecules in organic chemistry. Merging of N-heterocyclic carbene catalysis with transition metal catalysis holds the potential to achieve unprecedented transformations with broad substrate scope and excellent stereoselectivity, which are unfeasible with individual catalyst. Thus, this dual catalysis has attracted increasing attention, and numerous elegant dual catalytic systems have been established. In this review, we summarize the recent achievements of dual NHC/transition metal catalysis, including the reaction design, mechanistic studies and practical applications.
Collapse
Affiliation(s)
- Zhao-Fei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Wang XS, Zhang YJ, Cao J, Xu LW. Photoinduced Palladium-Catalyzed Radical Germylative Arylation of Alkenes with Chlorogermanes. J Org Chem 2024; 89:12848-12852. [PMID: 39145490 DOI: 10.1021/acs.joc.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We describe a visible light-induced palladium-catalyzed radical germylative arylation of alkenes with easily accessible chlorogermanes. This protocol provides expedient access to germanium-substituted indolin-2-ones in good to excellent yields under mild reaction conditions. The key step for this strategy lies in the reductive activation of germanium-chloride bonds with an excited palladium complex under visible light irradiation. The involvement of germanium radicals was evidenced by electron paramagnetic resonance spectroscopy experiments.
Collapse
Affiliation(s)
- Xue-Song Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yu-Jie Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, P. R. China
| |
Collapse
|
8
|
Zhan X, Nie Z, Li N, Zhou A, Lv H, Liang M, Wu K, Cheng GJ, Yin Q. Catalytic Asymmetric Cascade Dearomatization of Indoles via a Photoinduced Pd-Catalyzed 1,2-Bisfunctionalization of Butadienes. Angew Chem Int Ed Engl 2024; 63:e202404388. [PMID: 38641988 DOI: 10.1002/anie.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Photoinduced Pd-catalyzed bisfunctionalization of butadienes with a readily available organic halide and a nucleophile represents an emerging and attractive method to assemble versatile alkenes bearing various functional groups at the allylic position. However, enantiocontrol and/or diastereocontrol in the C-C or C-X bond-formation step have not been solved due to the open-shell process. Herein, we present a cascade asymmetric dearomatization reaction of indoles via photoexcited Pd-catalyzed 1,2-biscarbonfunctionalization of 1,3-butadienes, wherein asymmetric control on both the nucleophile and electrophile part is achieved for the first time in photoinduced bisfunctionalization of butadienes. This method delivers structurally novel chiral spiroindolenines bearing two contiguous stereogenic centers with high diastereomeric ratios (up to >20 : 1 dr) and good to excellent enantiomeric ratios (up to 97 : 3 er). Experimental and computational studies of the mechanism have confirmed a radical pathway involving excited-state palladium catalysis. The alignment and non-covalent interactions between the substrate and the catalyst were found to be essential for stereocontrol.
Collapse
Affiliation(s)
- Xiaohang Zhan
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Zhiwen Nie
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Na Li
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, P. R. China
| | - Ao Zhou
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Haotian Lv
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Mingrong Liang
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Keqin Wu
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, P. R. China
| | - Qin Yin
- Shenzhen University of Advanced Technology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, P. R. China
| |
Collapse
|
9
|
Debnath C, Bhoi SR, Gandhi S. N-Heterocyclic carbene/palladium synergistic catalysis in organic synthesis. Org Biomol Chem 2024; 22:4613-4624. [PMID: 38804684 DOI: 10.1039/d4ob00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The cooperation of two distinct catalytic cycles to activate different reactive centers leading to a chemical transformation has been classified as synergistic catalysis. The synergistic combination of NHC with palladium catalysis has emerged as a powerful strategy in the last few years. Merging the ability of NHCs to inverse the polarity of a functional group with the unique reactivity of palladium enables transformations that cannot be accomplished by either of these catalysts alone. Despite the associated challenges, such as quenching of catalysts, reactivity mismatch etc., significant development has been achieved in the field of NHC/Pd synergistic catalysis. The recent incorporation of photoredox catalysis with NHC/Pd synergistic catalysis has further advanced this area. This review highlights the developments made in the area of NHC/Pd synergistic catalysis.
Collapse
Affiliation(s)
- Chhanda Debnath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| | - Saswat Ranjan Bhoi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| | - Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| |
Collapse
|
10
|
Huang Y, Wang XH, Zhang CL, Ye S. Stereoselective Fluoroalkylacylation of Alkynes via Cooperative N-Heterocyclic Carbene/Palladium Catalysis. Org Lett 2024. [PMID: 38625098 DOI: 10.1021/acs.orglett.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Herein, a cooperative N-heterocyclic carbene- and palladium-catalyzed three-component reaction of alkynes with aldehydes and fluoroalkyl iodides is developed. A series of biologically valuable CF2R-incorporated α-substituted enones was obtained in moderate to good yields. This mild catalytic method exhibits exclusive regio- and stereoselectivity, excellent functional group tolerance, and a broad substrate scope including terminal and internal alkynes. Mechanistic investigations disclose that this alkyne fluoroalkylacylation proceeds via a radical relay process in which vinyl iodides serve as putative reaction intermediates.
Collapse
Affiliation(s)
- Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Han Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Jin ML, Dong YX, Gao ZH, Ye S. Phosphonylacylation of Alkenes Enabled by Visible-Light-Induced N-Heterocyclic Carbene Catalysis. Org Lett 2024; 26:1711-1717. [PMID: 38377588 DOI: 10.1021/acs.orglett.4c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Herein, we report the phosphonylacylation of alkenes via visible-light-induced N-heterocyclic carbene (NHC) catalysis to afford a series of γ-ketophosphonates in moderate to good yields. This protocol features mild conditions, free of photocatalyst, and good compatibility of functional groups. The excited Breslow enolate intermediate was proposed to undergo single-electron transfer with oxime phosphonate to generate the corresponding ketyl radical and phosphonyl radical.
Collapse
Affiliation(s)
- Ming-Lei Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Xiong Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Byun S, Hwang MU, Wise HR, Bay AV, Cheong PHY, Scheidt KA. Light-Driven Enantioselective Carbene-Catalyzed Radical-Radical Coupling. Angew Chem Int Ed Engl 2023; 62:e202312829. [PMID: 37845183 PMCID: PMC10841513 DOI: 10.1002/anie.202312829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
An enantioselective carbene-catalyzed radical-radical coupling of acyl imidazoles and racemic Hantzsch esters is disclosed. This method involves the coupling of an N-heterocyclic carbene-derived ketyl radical and a secondary sp3 -carbon radical and allows access to chiral α-aryl aliphatic ketones in moderate-to-good yields and enantioselectivities without any competitive epimerization. The utility of this protocol is highlighted by the late-stage functionalization of various pharmaceutical compounds and is further demonstrated by the transformation of the enantioenriched products to biologically relevant molecules. Computational investigations reveal the N-heterocyclic carbene controls the double-facial selectivity of the ketyl radical and the alkyl radicals, respectively.
Collapse
Affiliation(s)
- Seunghwan Byun
- Department of Chemistry, Northwestern University Silverman Hall, Evanston, Illinois 60208 (USA)
| | - Meemie U. Hwang
- Department of Chemistry, Northwestern University Silverman Hall, Evanston, Illinois 60208 (USA)
| | - Henry R. Wise
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, Oregon 97331 (USA)
| | - Anna V. Bay
- Department of Chemistry, Northwestern University Silverman Hall, Evanston, Illinois 60208 (USA)
| | - Paul H.-Y. Cheong
- Department of Chemistry, Oregon State University 153 Gilbert Hall, Corvallis, Oregon 97331 (USA)
| | | |
Collapse
|
13
|
Kim J, Müller S, Ritter T. Synthesis of α-Branched Enones via Chloroacylation of Terminal Alkenes. Angew Chem Int Ed Engl 2023; 62:e202309498. [PMID: 37786992 DOI: 10.1002/anie.202309498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Here, we show the conversion of unactivated alkenes into α-branched enones via regioselective chloroacylation with acyl chlorides. The method relies upon the initial in situ generation of chlorine radicals directly from the acyl chloride precursor under cooperative nickel/photoredox catalysis. Subsequent HCl elimination provides enones and α,β-unsaturated esters that are not accessible via the conventional acylation approaches that provide the other, linear constitutional isomer.
Collapse
Affiliation(s)
- Jungwon Kim
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Sven Müller
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
15
|
Zhou N, Zhao F, Wang L, Gao X, Zhao X, Zhang M. NHC-Catalyzed Regioselective Intramolecular Radical Cyclization Reaction for the Synthesis of Benzazepine Derivatives. Org Lett 2023; 25:6072-6076. [PMID: 37550857 DOI: 10.1021/acs.orglett.3c02323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
A novel and efficient strategy for the synthesis of a series of structurally interesting benzazepine derivatives via an N-heterocyclic carbene-catalyzed regioselective intramolecular radical cyclization has been developed. This protocol features good regioselectivity, good functional-group compatibility, and wide substrate scope, providing a transition-metal- and oxidant-free pathway to access the seven-membered rings under mild reaction conditions. Additionally, further transformation of benzazepines and a large-scale experiment were also conducted.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fangli Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Lei Wang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiang Gao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaowei Zhao
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
16
|
Rahman MM, Zhao Q, Meng G, Lalancette R, Szostak R, Szostak M. [IPr #-PEPPSI]: A Well-Defined, Highly Hindered and Broadly Applicable Pd(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalyst for Cross-Coupling Reactions. Molecules 2023; 28:5833. [PMID: 37570803 PMCID: PMC10421006 DOI: 10.3390/molecules28155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
In this Special Issue, "Featured Papers in Organometallic Chemistry", we report on the synthesis and characterization of [IPr#-PEPPSI], a new, well-defined, highly hindered Pd(II)-NHC precatalyst for cross-coupling reactions. This catalyst was commercialized in collaboration with MilliporeSigma, Burlington, ON, Canada (no. 925489) to provide academic and industrial researchers with broad access to reaction screening and optimization. The broad activity of [IPr#-PEPPSI] in cross-coupling reactions in a range of bond activations with C-N, C-O, C-Cl, C-Br, C-S and C-H cleavage is presented. A comprehensive evaluation of the steric and electronic properties is provided. Easy access to the [IPr#-PEPPSI] class of precatalysts based on modular pyridine ligands, together with the steric impact of the IPr# peralkylation framework, will facilitate the implementation of well-defined, air- and moisture-stable Pd(II)-NHC precatalysts in chemistry research.
Collapse
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430000, China
| | - Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, 50-383 Wroclaw, Poland;
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA; (M.M.R.); (Q.Z.); (G.M.); (R.L.)
| |
Collapse
|
17
|
Wang HY, Wang XH, Zhou BA, Zhang CL, Ye S. Ketones from aldehydes via alkyl C(sp 3)-H functionalization under photoredox cooperative NHC/palladium catalysis. Nat Commun 2023; 14:4044. [PMID: 37422483 DOI: 10.1038/s41467-023-39707-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Direct synthesis of ketones from aldehydes features high atom- and step-economy. Yet, the coupling of aldehydes with unactivated alkyl C(sp3)-H remains challenging. Herein, we develop the synthesis of ketones from aldehydes via alkyl C(sp3)-H functionalization under photoredox cooperative NHC/Pd catalysis. The two-component reaction of iodomethylsilyl alkyl ether with aldehydes gave a variety of β-, γ- and δ-silyloxylketones via 1,n-HAT (n = 5, 6, 7) of silylmethyl radicals to generate secondary or tertiary alkyl radicals and following coupling with ketyl radicals from aldehydes under photoredox NHC catalysis. The three-component reaction with the addition of styrenes gave the corresponding ε-hydroxylketones via the generation of benzylic radicals by the addition of alkyl radicals to styrenes and following coupling with ketyl radicals. This work demonstrates the generation of ketyl radical and alkyl radical under the photoredox cooperative NHC/Pd catalysis, and provides two and three component reactions for the synthesis of ketones from aldehydes with alkyl C(sp3)-H functionalization. The synthetic potential of this protocol was also further illustrated by the late-stage functionalization of natural products.
Collapse
Affiliation(s)
- Hai-Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin-Han Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Bang-An Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
18
|
Jiang J, Zhou J, Li Y, Peng C, He G, Huang W, Zhan G, Han B. Silver/chiral pyrrolidinopyridine relay catalytic cycloisomerization/(2 + 3) cycloadditions of enynamides to asymmetrically synthesize bispirocyclopentenes as PDE1B inhibitors. Commun Chem 2023; 6:128. [PMID: 37337043 DOI: 10.1038/s42004-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Significant progress has been made in asymmetric synthesis through the use of transition metal catalysts combined with Lewis bases. However, the use of a dual catalytic system involving 4-aminopyridine and transition metal has received little attention. Here we show a metal/Lewis base relay catalytic system featuring silver acetate and a modified chiral pyrrolidinopyridine (PPY). It was successfully applied in the cycloisomerization/(2 + 3) cycloaddition reaction of enynamides. Bispirocyclopentene pyrazolone products could be efficiently synthesized in a stereoselective and economical manner (up to >19:1 dr, 99.5:0.5 er). Transformations of the product could access stereodivergent diastereoisomers and densely functionalized polycyclic derivatives. Mechanistic studies illustrated the relay catalytic model and the origin of the uncommon chemoselectivity. In subsequent bioassays, the products containing a privileged drug-like scaffold exhibited isoform-selective phosphodiesterase 1 (PDE1) inhibitory activity in vitro. The optimal lead compound displayed a good therapeutic effect for ameliorating pulmonary fibrosis via inhibiting PDE1 in vivo.
Collapse
Affiliation(s)
- Jing Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Yang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| |
Collapse
|
19
|
Delfau L, Assani N, Nichilo S, Pecaut J, Philouze C, Broggi J, Martin D, Tomás-Mendivil E. On the Redox Properties of the Dimers of Thiazol-2-ylidenes That Are Relevant for Radical Catalysis. ACS ORGANIC & INORGANIC AU 2023; 3:136-142. [PMID: 37303499 PMCID: PMC10251502 DOI: 10.1021/acsorginorgau.3c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/13/2023]
Abstract
We report the isolation and study of dimers stemming from popular thiazol-2-ylidene organocatalysts. The model featuring 2,6-di(isopropyl)phenyl (Dipp) N-substituents was found to be a stronger reducing agent (Eox = -0.8 V vs SCE) than bis(thiazol-2-ylidenes) previously studied in the literature. In addition, a remarkable potential gap between the first and second oxidation of the dimer also allows for the isolation of the corresponding air-persistent radical cation. The latter is an unexpected efficient promoter of the radical transformation of α-bromoamides into oxindoles.
Collapse
Affiliation(s)
| | - Nadhrata Assani
- Aix
Marseille Univ., CNRS, Institut de Chimie Radicalaire - UMR 7273,
Faculté de Pharmacie, 13005 Marseille, France
| | | | - Jacques Pecaut
- Univ.
Grenoble Alpes, CEA, CNRS, INAC-SyMMES, UMR 5819 38000 Grenoble, France
| | | | - Julie Broggi
- Aix
Marseille Univ., CNRS, Institut de Chimie Radicalaire - UMR 7273,
Faculté de Pharmacie, 13005 Marseille, France
| | - David Martin
- Univ.
Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | |
Collapse
|
20
|
Wang X, Yang R, Zhu B, Liu Y, Song H, Dong J, Wang Q. Direct allylic acylation via cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom transfer, and photoredox catalysis. Nat Commun 2023; 14:2951. [PMID: 37221185 DOI: 10.1038/s41467-023-38743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Herein, we report a mild, operationally simple, multicatalytic method for the synthesis of β,γ-unsaturated ketones via allylic acylation of alkenes. Specifically, the method combines N‑heterocyclic carbene catalysis, hydrogen atom transfer catalysis, and photoredox catalysis for cross-coupling reactions between a wide range of feedstock carboxylic acids and readily available olefins to afford structurally diverse β,γ-unsaturated ketones without olefin transposition. The method could be used to install acyl groups on highly functionalized natural-product-derived compounds with no need for substrate pre-activation, and C-H functionalization proceed with excellent site selectivity. To demonstrate the potential applications of the method, we convert a representative coupling product into various useful olefin synthons.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Binbing Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
21
|
Wang JM, Chen T, Yao CS, Zhang K. Synthesis of β-Ketonitriles via N-Heterocyclic-Carbene-Catalyzed Radical Coupling of Aldehydes and Azobis(isobutyronitrile). Org Lett 2023; 25:3325-3329. [PMID: 37104729 DOI: 10.1021/acs.orglett.3c01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Herein, an NHC (N-heterocyclic carbene)-catalyzed radical coupling reaction between aldehydes and azobis(isobutyronitrile) (AIBN) has been developed. This method provides an efficient and convenient approach for the synthesis of β-ketonitriles containing a quaternary carbon center (31 examples, up to >99% yield) utilizing commercially available substrates. This protocol features broad substrate scope, good functional group tolerance, and high efficiency under metal-free and mild reaction conditions.
Collapse
Affiliation(s)
- Jiao-Mei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Teng Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Chang-Sheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
22
|
Yang HB, Jin XF, Jiang HY, Luo W. Construction of C(CO)-C(CO) Bond via NHC-Catalyzed Radical Cross-Coupling Reaction. Org Lett 2023; 25:1829-1833. [PMID: 36897255 DOI: 10.1021/acs.orglett.3c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A C(sp2)-C(sp2) bond can be constructed via a photoredox/N-heterocyclic carbene (NHC)-cocatalyzed radical cross-coupling reaction, which provides a complementary strategy to classic electron pair processes. The present protocol represents the first example of an NHC-catalyzed two-component radical cross-coupling reaction involving C(sp2)-centered radical species. The decarboxylative acylation of oxamic acid with acyl fluoride was conducted under mild conditions and allowed the preparation of a variety of useful α-keto amides, including sterically congested ones.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Fang Jin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hui-Ying Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
23
|
Dong YX, Zhang CL, Gao ZH, Ye S. Iminoacylation of Alkenes via Photoredox N-Heterocyclic Carbene Catalysis. Org Lett 2023; 25:855-860. [PMID: 36700625 DOI: 10.1021/acs.orglett.3c00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The iminoacylation of alkenes via photoredox N-heterocyclic carbene catalysis is developed with the employment of alkene-tethered α-imino-oxy acids and acyl imidazoles. The corresponding substituted 3,4-dihydro-2H-pyrroles were afforded in moderate to good yields with good to high diastereoselectivities in most cases. The reaction involves the 5-exo-trig radical cyclization of an alkene-tethered iminyl radical and the following coupling with a ketyl radical from acyl imidazole under NHC catalysis.
Collapse
Affiliation(s)
- Yi-Xiong Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Zeng R, Xie C, Xing JD, Dai HY, He MH, Xu PS, Yang QC, Han B, Li JL. Construction of alkenyl-isoquinolinones through NHC-catalyzed remote C(sp3)–H acylation and cascade cyclization of benzamides and enals. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Tao X, Wang Q, Kong L, Ni S, Pan Y, Wang Y. Branched-Selective Hydroacylation of Alkenes via Photoredox Cobalt and N-Heterocyclic Carbene Cooperative Triple Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingyu Kong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|