1
|
Rosenbaum D, Reichelt J, Gudaitis S, Kühne S, Zielinski S, Loreth D, Blume L, Brand J, Vitzthum H, Sachs W, Lampert A, Seipold L, Voss M, Meyer-Schwesinger C, Saftig P. Regulation of podocyte surface proteins by the enzyme A Disintegrin And Metalloproteinase 10 (ADAM10). Kidney Int 2025:S0085-2538(25)00344-8. [PMID: 40339751 DOI: 10.1016/j.kint.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION Podocytes are terminally differentiated cells of the kidney filtration barrier. Their network of interdigitating foot processes embraces the glomerular capillaries and are likely remodeled by cleavage of podocyte surface proteins. The metalloproteinase ADAM10 is a major regulator of such surface protein shedding and was recently implicated in the pathophysiology of antibody-mediated podocyte injury. METHODS Here, we studied the contribution of ADAM10 in podocyte biology in health and disease and analyzed prominently expressed and disease-relevant podocyte membrane proteins in detail. We used genetically deficient mice, ADAM10-inhibited pig glomeruli, and various in vitro experimental systems where detailed biochemical and imaging techniques were performed. RESULTS We found that thrombospondin type 1 domain-containing 7A (THSD7A) and phospholipase A2 receptor 1 (PLA2R1), both of which are primary membranous nephropathy antigens, accumulated upon ADAM10 inhibition/deficiency. Moreover, increased proteins levels of the foot process adhesion protein β-dystroglycan (β-DG) were found. Detailed biochemical analyses in different experimental systems revealed that THSD7A, PLA2R1, and β-DG are true ADAM10 substrates and subject to γ-secretase-mediated intramembrane proteolysis. These substrates co-localize and interact with the protease in podocytes and their shedding regulates filopodogenesis (THSD7A and β-DG) and cell matrix adhesion (β-DG). ADAM10 substrate usage, but also the stability of the podocyte cell surface proteins, is regulated by tetraspanin (Tspan) 15, which is likewise present at podocyte foot processes. A tricomponent complex of THSD7A/ADAM10/Tspan15 was found, with THSD7A acting as both an ADAM10 substrate and regulator. CONCLUSIONS Altogether, our data emphasize the importance of ADAM10/Tspan15-mediated regulation of podocyte foot process surface proteins that serve as antigens in primary membranous nephropathy and impact cytoskeletal dynamics.
Collapse
Affiliation(s)
- David Rosenbaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Julia Reichelt
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Simonas Gudaitis
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stine Kühne
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Helga Vitzthum
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany
| | - Alina Lampert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany; Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Seipold
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center of Kidney Health, Hamburg, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany.
| |
Collapse
|
2
|
Planells-Cases R, Vorobeva V, Kar S, Schmitt FW, Schulte U, Schrecker M, Hite RK, Fakler B, Jentsch TJ. Endosomal chloride/proton exchangers need inhibitory TMEM9 β-subunits for regulation and prevention of disease-causing overactivity. Nat Commun 2025; 16:3117. [PMID: 40169677 PMCID: PMC11962092 DOI: 10.1038/s41467-025-58546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
The function of endosomes critically depends on their ion homeostasis. A crucial role of luminal Cl-, in addition to that of H+, is increasingly recognized. Both ions are transported by five distinct endolysosomal CLC chloride/proton exchangers. Dysfunction of each of these transporters entails severe disease. Here we identified TMEM9 and TMEM9B as obligatory β-subunits for endosomal ClC-3, ClC-4, and ClC-5. Mice lacking both β-subunits displayed severely reduced levels of all three CLCs and died embryonically or shortly after birth. TMEM9 proteins regulate trafficking of their partners. Surprisingly, they also strongly inhibit CLC ion transport. Tonic inhibition enables the regulation of CLCs and prevents toxic Cl- accumulation and swelling of endosomes. Inhibition requires a carboxy-terminal TMEM9 domain that interacts with CLCs at multiple sites. Disease-causing CLCN mutations that weaken inhibition by TMEM9 proteins cause a pathogenic gain of ion transport. Our work reveals the need to suppress, in a regulated manner, endolysosomal chloride/proton exchange. Several aspects of endosomal ion transport must be revised.
Collapse
Affiliation(s)
- Rosa Planells-Cases
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Viktoriia Vorobeva
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Graduate Program of the Free University Berlin, Berlin, Germany
| | - Sumanta Kar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska W Schmitt
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Graduate Program of the Humboldt University Berlin, Berlin, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Logopharm GmbH, March-Buchheim, Breisgau, Germany
| | - Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Chen Q, Chen S, Ye Q, Lin W, Liao Y, Xiong Y, Xu J, Gao R, Li B, Liu L, Wei L. Anti-nephrin antibody: a potential biomarker of minimal change disease. Clin Kidney J 2025; 18:sfaf012. [PMID: 40046822 PMCID: PMC11879414 DOI: 10.1093/ckj/sfaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 04/05/2025] Open
Abstract
Background Minimal change disease (MCD) is a common pathological type of nephrotic syndrome in children and adults, and the mechanisms remain obscure. The diagnosis of MCD still relies on renal biopsy, lacking effective biological markers. This study explores the diagnostic value of circulating anti-nephrin antibody in MCD patients and evaluates the correlation with disease activity indicators such as proteinuria. Methods The study included 108 adult patients with glomerular disease, including 36 with MCD, 16 with primary focal segmental glomerulosclerosis (FSGS), 20 with primary membranous nephropathy (MN), 17 with diabetic nephropathy (DN) and 19 with immunoglobulin A nephropathy (IgAN). Twenty healthy volunteers were included. Circulating anti-nephrin antibody was detected by indirect immunofluorescence method of cell-based assay. The receiver-operating characteristic (ROC) curve was used to evaluate the role of circulating anti-nephrin antibody in the diagnosis of MCD. The correlations between anti-nephrin antibody and clinical parameters were analyzed. Results The prevalence of circulating anti-nephrin antibody was 19.44% (7 of 36) in MCD and 26.92% (7 of 26) in MCD patients with nephrotic proteinuria, which was higher than in FSGS, PMN, DN, IgAN and healthy volunteers. The ROC curve showed that the sensitivity of anti-nephrin antibody used in the diagnosis of MCD was 19.4% and the specificity was 97.8%. The MCD patients with positive anti-nephrin antibody had heavier proteinuria and higher serum lipid levels, while having lower serum albumin and blood IgG levels. Anti-nephrin antibody might turn to negative when the MCD patient had a response to therapy. Conclusions Circulating anti-nephrin antibody may be a potential biomarker of MCD and may play a role in the MCD diagnosis.
Collapse
Affiliation(s)
- Qiaoling Chen
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| | - Sihui Chen
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiuping Ye
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| | - Wanjun Lin
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| | - Yonggen Liao
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| | - Yunfeng Xiong
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiaming Xu
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruiyu Gao
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Binbin Li
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| | - Lifang Liu
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| | - Lixin Wei
- Department of Nephrology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Clinical Immunology, Fuzhou, China
| |
Collapse
|
4
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
5
|
Bruschi M, Candiano G, Petretto A, Angeletti A, Meroni PL, Prunotto M, Ghiggeri GM. Antibodies Against Anti-Oxidant Enzymes in Autoimmune Glomerulonephritis and in Antibody-Mediated Graft Rejection. Antioxidants (Basel) 2024; 13:1519. [PMID: 39765847 PMCID: PMC11726969 DOI: 10.3390/antiox13121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 01/15/2025] Open
Abstract
Historically, oxidants have been considered mechanisms of glomerulonephritis, but a direct cause-effect correlation has never been demonstrated. Several findings in the experimental model of autoimmune conditions with renal manifestations point to the up-regulation of an oxidant/anti-oxidant system after the initial deposition of autoantibodies in glomeruli. Traces of oxidants in glomeruli cannot be directly measured for their rapid metabolism, while indirect proof of their implications is derived from the observation that Superoxide Oxidase 2 (SOD2) is generated by podocytes after autoimmune stress. The up-regulation of other anti-oxidant systems takes place as well. Here, we discuss the concept that a second wave of antibodies targeting SOD2 is generated in autoimmune glomerulonephritis and may negatively influence the clinical outcome. Circulating and renal deposits of anti-SOD2 antibodies have been detected in patients with membranous nephropathy and lupus nephritis, two main examples of autoimmune disease of the kidney, which correlate with the clinical outcome. The presence of anti-SOD2 antibodies in circulation and in the kidney has been interpreted as a mechanism which modifies the normal tissue response to oxidative stress. Overall, these findings repropose the role of the oxidant/anti-oxidant balance in autoimmune glomerulonephritis. The same conclusion on the oxidant/anti-oxidant balance may be proposed in renal transplant. Patients receiving a renal graft may develop antibodies specific for Glutathione Synthetase (GST), which modulates the amount of GST disposable for rapid scavenging of reactive oxygen species (ROS). The presence of anti-GST antibodies in serum is a major cause of rejection. The perspective is to utilize molecules with known anti-oxidant effects to modulate the anti-oxidative response in autoimmune pathology of the kidney. A lot of molecules with known anti-oxidant effects can be utilized, many of which have already been proven effective in animal models of autoimmune glomerulonephritis. Many molecules with anti-oxidant activity are natural products; in some cases, they are constituents of diets. Owing to the simplicity of these drugs and the absence of important adverse effects, many anti-oxidants could be directly utilized in human beings.
Collapse
Affiliation(s)
- Maurizio Bruschi
- Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy (G.C.); (A.A.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Giovanni Candiano
- Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy (G.C.); (A.A.)
| | | | - Andrea Angeletti
- Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy (G.C.); (A.A.)
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano–Istituto di Ricovero e Cura a Carattere Scientifico, 20149 Milano, Italy;
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
| | - Gian Marco Ghiggeri
- Unit of Nephrology, Dialysis and Transplantation and Laboratory of Molecular Nephrology, Core Facilities-Proteomics Laboratory, 16147 Genoa, Italy (G.C.); (A.A.)
| |
Collapse
|
6
|
Lucas D, Munoz C, O'Boyle Q, Pires IS, Palmer AF, Cabrales P. Mitigating hemoglobin-induced nephropathy: ApoHb-hp protection of podocytes. Physiol Rep 2024; 12:e70132. [PMID: 39578364 PMCID: PMC11584305 DOI: 10.14814/phy2.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
This study investigates hemoglobin (Hb)-induced kidney injury and the protective role of the ApoHemoglobin-Haptoglobin (ApoHb-Hp) complex against heme and Hb damage. Hb facilitates oxygen (O2) delivery but poses challenges outside red blood cells (RBCs) due to toxic Hb and heme mechanisms. These are managed by binding to serum proteins like Haptoglobin (Hp) and Hemopexin (Hpx). During hemolysis, depletion of Hp and Hpx leaves tissues vulnerable to Hb and heme. To address this, we developed the ApoHb-Hp complex, based on Apohemoglobin, which is produced by removing heme from Hb, conjugated with Hp. This complex acts as a dual scavenger for Hb and heme, preventing tissue damage. Our findings demonstrate that ApoHb-Hp significantly protects MPC5 podocytes from Hb-induced damage. Fluorescent staining showed a higher percentage of nephrin-positive cells in the ApoHb-Hp group, and MTT assays revealed enhanced cell viability compared to Hb alone. Additionally, ApoHb-Hp reduced reactive oxygen species (ROS) production, with the Hb group exhibiting significantly elevated ROS levels. The ApoHb-Hp complex mitigated the depletion of protective mechanisms, as shown by significant increases in superoxide dismutase (SOD) and glutathione (GSH). Moreover, ApoHb-Hp treatment reduced the activation of the NLRP3 inflammasome signaling pathway and inflammatory cytokines IL-1β and IL-18. These findings underscore the therapeutic potential of ApoHb-Hp in mitigating Hb-induced renal damage by preserving podocyte viability and reducing oxidative stress. Overall, ApoHb-Hp maintained protective mechanisms depleted otherwise by Hb. These findings highlight ApoHb-Hp's potential as a therapeutic agent against Hb-induced renal damage, offering insights into its mechanisms and implications for treating conditions involving hemolysis.
Collapse
Affiliation(s)
- Daniela Lucas
- Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Carlos Munoz
- Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Quintin O'Boyle
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Ivan S. Pires
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Pedro Cabrales
- Department of BioengineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
7
|
Wu G, Liu S, Hagenstein J, Alawi M, Hengel FE, Schaper M, Akyüz N, Liao Z, Wanner N, Tomas NM, Failla AV, Dierlamm J, Körbelin J, Lu S, Huber TB. Adeno-associated virus-based gene therapy treats inflammatory kidney disease in mice. J Clin Invest 2024; 134:e174722. [PMID: 39225099 PMCID: PMC11364381 DOI: 10.1172/jci174722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Adeno-associated virus (AAV) is a promising in vivo gene delivery platform showing advantages in delivering therapeutic molecules to difficult or undruggable cells. However, natural AAV serotypes have insufficient transduction specificity and efficiency in kidney cells. Here, we developed an evolution-directed selection protocol for renal glomeruli and identified what we believe to be a new vector termed AAV2-GEC that specifically and efficiently targets the glomerular endothelial cells (GEC) after systemic administration and maintains robust GEC tropism in healthy and diseased rodents. AAV2-GEC-mediated delivery of IdeS, a bacterial antibody-cleaving proteinase, provided sustained clearance of kidney-bound antibodies and successfully treated antiglomerular basement membrane glomerulonephritis in mice. Taken together, this study showcases the potential of AAV as a gene delivery platform for challenging cell types. The development of AAV2-GEC and its successful application in the treatment of antibody-mediated kidney disease represents a significant step forward and opens up promising avenues for kidney medicine.
Collapse
Affiliation(s)
- Guochao Wu
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | - Shuya Liu
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | - Julia Hagenstein
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | | | | | - Melanie Schaper
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | - Nuray Akyüz
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, and
| | - Zhouning Liao
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | - Nicola Wanner
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | - Nicola M. Tomas
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | | | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, and
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, and
| | - Shun Lu
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| | - Tobias B. Huber
- III. Department of Medicine
- Hamburg Center for Kidney Health (HCKH)
| |
Collapse
|
8
|
Früh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen LY, Fernandez-Fernandez D, Rem PD, Ulrich D, Schwenk J, Chen Z, Le Monnier E, Fritzius T, Innocenti SM, Besseyrias V, Trovò L, Stawarski M, Argilli E, Sherr EH, van Bon B, Kamsteeg EJ, Iascone M, Pilotta A, Cutrì MR, Azamian MS, Hernández-García A, Lalani SR, Rosenfeld JA, Zhao X, Vogel TP, Ona H, Scott DA, Scheiffele P, Strømgaard K, Tafti M, Gassmann M, Fakler B, Shigemoto R, Bettler B. Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadk5462. [PMID: 38985877 PMCID: PMC11235169 DOI: 10.1126/sciadv.adk5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.
Collapse
Affiliation(s)
- Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sami Boudkkazi
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Li-Yuan Chen
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Diego Fernandez-Fernandez
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal D. Rem
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Schwenk
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Maria Iascone
- Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Herda Ona
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Scheiffele
- Biocenter, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Peng X, Liu M, Wu Y, Fan W, Hou Y, Kong Y, Liu Y, Zhang X, Shan C, Sun H, Yang Y. Intermittent protein restriction before but not after the onset of diabetic kidney disease attenuates disease progression in mice. Front Nutr 2024; 11:1383658. [PMID: 38988853 PMCID: PMC11233791 DOI: 10.3389/fnut.2024.1383658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background High dietary protein intake exacerbates proteinuria in individuals with diabetic kidney disease (DKD). However, studies on the impacts of low protein diet (LPD) on DKD have yielded conflicting results. Furthermore, patient compliance to continuous protein restriction is challenging. Objective The current study aims to investigate the effects of intermittent protein restriction (IPR) on disease progression of DKD. Methods Diabetic KK-Ay mice were used in this study. For the IPR treatment, three consecutive days of LPD were followed by four consecutive days of normal protein diet (NPD) within each week. For early intervention, mice received IPR before DKD onset. For late intervention, mice received IPR after DKD onset. In both experiments, age-matched mice fed continuous NPD served as the control group. Kidney morphology, structure and function of mice in different groups were examined. Results Intermittent protein restriction before DKD onset ameliorated pathological changes in kidney, including nephromegaly, glomerular hyperfiltration, tubular injuries and proteinuria, without improving glycemic control. Meanwhile, IPR initiated after DKD onset showed no renoprotective effects despite improved glucose homeostasis. Conclusion Intermittent protein restriction before rather than after DKD onset protects kidneys, and the impacts of IPR on the kidneys are independent of glycemic control. IPR shows promise as an effective strategy for managing DKD and improving patient compliance.
Collapse
Affiliation(s)
- Xiaoyue Peng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Min Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yijie Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenying Fan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yi Hou
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yan Kong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chunyan Shan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yanhui Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Castillo-Mancho V, Atienza-Manuel A, Sarmiento-Jiménez J, Ruiz-Gómez M, Culi J. Phospholipid scramblase 1: an essential component of the nephrocyte slit diaphragm. Cell Mol Life Sci 2024; 81:261. [PMID: 38878170 PMCID: PMC11335299 DOI: 10.1007/s00018-024-05287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.
Collapse
Affiliation(s)
- Vicente Castillo-Mancho
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Jorge Sarmiento-Jiménez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
11
|
Trovò L, Kouvaros S, Schwenk J, Fernandez-Fernandez D, Fritzius T, Rem PD, Früh S, Gassmann M, Fakler B, Bischofberger J, Bettler B. Synaptotagmin-11 facilitates assembly of a presynaptic signaling complex in post-Golgi cargo vesicles. EMBO Rep 2024; 25:2610-2634. [PMID: 38698221 PMCID: PMC11169412 DOI: 10.1038/s44319-024-00147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.
Collapse
Affiliation(s)
- Luca Trovò
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | - Simon Früh
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Center for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation, Freiburg, Germany
| | | | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
13
|
Qadri AH, Prajapati J, Faheem I, Bhattacharjee U, Padmanaban HK, Mulukala SKN, Pasupulati AK. Biophysical characterization and insights into the oligomeric nature of CD2-associated protein. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:20-33. [PMID: 38765876 PMCID: PMC11101965 DOI: 10.62347/uvsh8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Glomerular podocytes are specialized epithelial cells localized to the blood-urine interface of the kidney. Podocyte slit-diaphragm (SD), a size-and-charge-selective junction, is instrumental in blood ultrafiltration and the formation of protein-free urine. The SD consists of macromolecular complexes of several proteins, such as nephrin, podocin, and CD2-associated protein (CD2AP). CD2AP is an adapter protein and is considered to be crucial for the integrity of SD. Mutations in the SD proteins cause nephrotic syndrome (NS), characterized by proteinuria. SD proteins' structural features must be elucidated to understand the mechanism of proteinuria in NS. In this study, we expressed, purified, and biophysically characterized heterologously expressed human CD2AP. METHODS Codon-optimized human CD2AP was expressed in E. coli Rosetta cells. The recombinant protein was induced with 1 mM IPTG and purified by Ni-NTA affinity chromatography. Analytical size-exclusion chromatography, blue native-PAGE, circular dichroism, and fluorescence spectroscopy were performed to decipher the oligomeric nature, secondary structural content, and tertiary packing of CD2AP. RESULTS Our analysis revealed that CD2AP adopts a predominantly disordered secondary structure despite exhibiting moderate tertiary packing, characterized by low helical and β-sheet content. CD2AP readily assembles into homo-oligomers, with octamers and tetramers constituting the primary population. Interestingly, the inherent flexibility of CD2AP's secondary structural elements appears resistant to thermal denaturation. Frameshift mutation (p.K579Efs*7) that leads to loss of the coiled-coil domain promotes aberrant oligomerization of CD2AP through SH3 domains. CONCLUSION We successfully expressed full-length human CD2AP in a heterologous system, wherein the secondary structure of CD2AP is predominantly disordered. CD2AP can form higher-order oligomers, and the significance of these oligomers and the impact of mutations in the context of size-selective permeability of SD needs further investigation.
Collapse
Affiliation(s)
- Abrar H Qadri
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Jyotsana Prajapati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | - Iqball Faheem
- Department of Microbiology and Cell Biology, Indian Institute of ScienceBangalore 560012, India
| | - Utsa Bhattacharjee
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| | | | | | - Anil K Pasupulati
- Department of Biochemistry, University of HyderabadHyderabad 500046, India
| |
Collapse
|
14
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Sachs W, Blume L, Loreth D, Schebsdat L, Hatje F, Koehler S, Wedekind U, Sachs M, Zieliniski S, Brand J, Conze C, Florea BI, Heppner F, Krüger E, Rinschen MM, Kretz O, Thünauer R, Meyer-Schwesinger C. The proteasome modulates endocytosis specifically in glomerular cells to promote kidney filtration. Nat Commun 2024; 15:1897. [PMID: 38429282 PMCID: PMC10907641 DOI: 10.1038/s41467-024-46273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Kidney filtration is ensured by the interaction of podocytes, endothelial and mesangial cells. Immunoglobulin accumulation at the filtration barrier is pathognomonic for glomerular injury. The mechanisms that regulate filter permeability are unknown. Here, we identify a pivotal role for the proteasome in a specific cell type. Combining genetic and inhibitor-based human, pig, mouse, and Drosophila models we demonstrate that the proteasome maintains filtration barrier integrity, with podocytes requiring the constitutive and glomerular endothelial cells the immunoproteasomal activity. Endothelial immunoproteasome deficiency as well as proteasome inhibition disrupt the filtration barrier in mice, resulting in pathologic immunoglobulin deposition. Mechanistically, we observe reduced endocytic activity, which leads to altered membrane recycling and endocytic receptor turnover. This work expands the concept of the (immuno)proteasome as a control protease orchestrating protein degradation and antigen presentation and endocytosis, providing new therapeutic targets to treat disease-associated glomerular protein accumulations.
Collapse
Affiliation(s)
- Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Lisa Schebsdat
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Favian Hatje
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Sybille Koehler
- Hamburg Center of Kidney Health, Hamburg, Germany
- Nephrology, III Medical Clinic, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Wedekind
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Stephanie Zieliniski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center of Kidney Health, Hamburg, Germany
| | | | - Bogdan I Florea
- Bio-Organic Synthesis Group, Leiden University, Leiden, The Netherlands
| | - Frank Heppner
- Institute of Neuropathology, Charité, Berlin, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Rinschen
- Hamburg Center of Kidney Health, Hamburg, Germany
- Nephrology, III Medical Clinic, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- Hamburg Center of Kidney Health, Hamburg, Germany
- Nephrology, III Medical Clinic, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Thünauer
- Leibniz Institute of Virology, Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), University Hamburg, Hamburg, Germany
- Advanced Light and Fluorescence Microscopy (ALFM) Facility at the Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center of Kidney Health, Hamburg, Germany.
| |
Collapse
|
16
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Wang T, Li C, Wang X, Liu F. MAGI2 ameliorates podocyte apoptosis of diabetic kidney disease through communication with TGF-β-Smad3/nephrin pathway. FASEB J 2023; 37:e23305. [PMID: 37950637 DOI: 10.1096/fj.202301058r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Podocytes, the key component of the glomerular filtration barrier (GFB), are gradually lost during the progression of diabetic kidney disease (DKD), severely compromising kidney functionality. The molecular mechanisms regulating the survival of podocytes in DKD are incompletely understood. Here, we show that membrane-associated guanylate kinase inverted 2 (MAGI2) is specifically expressed in renal podocytes, and promotes podocyte survival in DKD. We found that MAGI2 expression was downregulated in podocytes cultured with high-glucose in vitro, and in kidneys of db/db mice as well as DKD patients. Conversely, we found enforced expression of MAGI2 via AAV transduction protected podocytes from apoptosis, with concomitant improvement of renal functions. Mechanistically, we found that MAGI2 deficiency induced by high glucose levels activates TGF-β signaling to decrease the expression of anti-apoptotic proteins. These results indicate that MAGI2 protects podocytes from cell death, and can be harnessed therapeutically to improve renal function in diabetic kidney disease.
Collapse
Affiliation(s)
- Tingli Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Perozzo AM, Schwenk J, Kamalova A, Nakagawa T, Fakler B, Bowie D. GSG1L-containing AMPA receptor complexes are defined by their spatiotemporal expression, native interactome and allosteric sites. Nat Commun 2023; 14:6799. [PMID: 37884493 PMCID: PMC10603098 DOI: 10.1038/s41467-023-42517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs) and germ cell-specific gene 1-like protein (GSG1L) are claudin-type AMPA receptor (AMPAR) auxiliary subunits that profoundly regulate glutamatergic synapse strength and plasticity. While AMPAR-TARP complexes have been extensively studied, less is known about GSG1L-containing AMPARs. Here, we show that GSG1L's spatiotemporal expression, native interactome and allosteric sites are distinct. GSG1L generally expresses late during brain development in a region-specific manner, constituting about 5% of all AMPAR complexes in adulthood. While GSG1L can co-assemble with TARPs or cornichons (CNIHs), it also assembles as the sole auxiliary subunit. Unexpectedly, GSG1L acts through two discrete evolutionarily-conserved sites on the agonist-binding domain with a weak allosteric interaction at the TARP/KGK site to slow desensitization, and a stronger interaction at a different site that slows recovery from desensitization. Together, these distinctions help explain GSG1L's evolutionary past and how it fulfills a unique signaling role within glutamatergic synapses.
Collapse
Affiliation(s)
- Amanda M Perozzo
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3A 1A1, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
| | - Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
19
|
Tsang TH, Wiese M, Helmstädter M, Stehle T, Seyfferth J, Shvedunova M, Holz H, Walz G, Akhtar A. Transcriptional regulation by the NSL complex enables diversification of IFT functions in ciliated versus nonciliated cells. SCIENCE ADVANCES 2023; 9:eadh5598. [PMID: 37624894 PMCID: PMC10456878 DOI: 10.1126/sciadv.adh5598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Members of the NSL histone acetyltransferase complex are involved in multiorgan developmental syndromes. While the NSL complex is known for its importance in early development, its role in fully differentiated cells remains enigmatic. Using a kidney-specific model, we discovered that deletion of NSL complex members KANSL2 or KANSL3 in postmitotic podocytes led to catastrophic kidney dysfunction. Systematic comparison of two primary differentiated cell types reveals the NSL complex as a master regulator of intraciliary transport genes in both dividing and nondividing cells. NSL complex ablation led to loss of cilia and impaired sonic hedgehog pathway in ciliated fibroblasts. By contrast, nonciliated podocytes responded with altered microtubule dynamics and obliterated podocyte functions. Finally, overexpression of wild-type but not a double zinc finger (ZF-ZF) domain mutant of KANSL2 rescued the transcriptional defects, revealing a critical function of this domain in NSL complex assembly and function. Thus, the NSL complex exhibits bifurcation of functions to enable diversity of specialized outcomes in differentiated cells.
Collapse
Affiliation(s)
- Tsz Hong Tsang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Meike Wiese
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Thomas Stehle
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Janine Seyfferth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Herbert Holz
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerd Walz
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Boudkkazi S, Schwenk J, Nakaya N, Brechet A, Kollewe A, Harada H, Bildl W, Kulik A, Dong L, Sultana A, Zolles G, Schulte U, Tomarev S, Fakler B. A Noelin-organized extracellular network of proteins required for constitutive and context-dependent anchoring of AMPA-receptors. Neuron 2023; 111:2544-2556.e9. [PMID: 37591201 PMCID: PMC10441612 DOI: 10.1016/j.neuron.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Information processing and storage in the brain rely on AMPA-receptors (AMPARs) and their context-dependent dynamics in synapses and extra-synaptic sites. We found that distribution and dynamics of AMPARs in the plasma membrane are controlled by Noelins, a three-member family of conserved secreted proteins expressed throughout the brain in a cell-type-specific manner. Noelin tetramers tightly assemble with the extracellular domains of AMPARs and interconnect them in a network-like configuration with a variety of secreted and membrane-anchored proteins including Neurexin1, Neuritin1, and Seizure 6-like. Knock out of Noelins1-3 profoundly reduced AMPARs in synapses onto excitatory and inhibitory (inter)neurons, decreased their density and clustering in dendrites, and abolished activity-dependent synaptic plasticity. Our results uncover an endogenous mechanism for extracellular anchoring of AMPARs and establish Noelin-organized networks as versatile determinants of constitutive and context-dependent neurotransmission.
Collapse
Affiliation(s)
- Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Naoki Nakaya
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Astrid Kollewe
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Harumi Harada
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Lijin Dong
- National Eye Institute, Genetic Engineering Facility, National Institutes of Health, Bethesda, MD, USA
| | - Afia Sultana
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Logopharm GmbH, Schlossstr. 14, 79232 March-Buchheim, Germany
| | - Stanislav Tomarev
- National Eye Institute, Section of Retinal Ganglion Cell Biology, National Institutes of Health, Bethesda, MD, USA.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany.
| |
Collapse
|
21
|
Gerlach GF, Imseis ZH, Cooper SL, Santos AN, O’Brien LL. Mapping of the podocin proximity-dependent proteome reveals novel components of the kidney podocyte foot process. Front Cell Dev Biol 2023; 11:1195037. [PMID: 37325559 PMCID: PMC10262054 DOI: 10.3389/fcell.2023.1195037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The unique architecture of glomerular podocytes is integral to kidney filtration. Interdigitating foot processes extend from the podocyte cell body, wrap around fenestrated capillaries, and form specialized junctional complexes termed slit diaphragms to create a molecular sieve. However, the full complement of proteins which maintain foot process integrity, and how this localized proteome changes with disease, remain to be elucidated. Methods: Proximity-dependent biotin identification (BioID) enables the identification of spatially localized proteomes. To this end, we developed a novel in vivo BioID knock-in mouse model. We utilized the slit diaphragm protein podocin (Nphs2) to create a podocin-BioID fusion. Podocin-BioID localizes to the slit diaphragm, and biotin injection leads to podocyte-specific protein biotinylation. We isolated the biotinylated proteins and performed mass spectrometry to identify proximal interactors. Results and Discussion: Gene ontology analysis of 54 proteins specifically enriched in our podocin-BioID sample revealed 'cell junctions,' 'actin binding,' and 'cytoskeleton organization' as top terms. Known foot process components were identified, and we further uncovered two novel proteins: the tricellular junctional protein Ildr2 and the CDC42 and N-WASP interactor Fnbp1l. We confirmed that Ildr2 and Fnbp1l are expressed by podocytes and partially colocalize with podocin. Finally, we investigated how this proteome changes with age and uncovered a significant increase in Ildr2. This was confirmed by immunofluorescence on human kidney samples and suggests altered junctional composition may preserve podocyte integrity. Together, these assays have led to new insights into podocyte biology and support the efficacy of utilizing BioID in vivo to interrogate spatially localized proteomes in health, aging, and disease.
Collapse
Affiliation(s)
| | | | | | | | - Lori L. O’Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Lassén E, Daehn IS. Insights into glomerular function and disease pathogenesis. Nat Rev Nephrol 2023; 19:85-86. [PMID: 36536248 PMCID: PMC10821748 DOI: 10.1038/s41581-022-00667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
More than three-quarters of cases of chronic kidney disease are caused by glomerular diseases with glomerulosclerosis, including diabetic kidney disease, hypertensive nephropathy and glomerulonephritis. Studies in 2022 provided insights into the molecular mechanisms that maintain dynamic glomerular structures and the responses of specific glomerular cell types during glomerular disease.
Collapse
Affiliation(s)
- Emelie Lassén
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilse S Daehn
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|