1
|
Zhao Y, Wu R, Wu X, Zhou N, Ren J, Liu W, Yu R, Zhang S, Yang J, Li H, Liu H. Modulation of physiological functions and metabolome of Vibrio alginolyticus by quorum-regulatory sRNA, Qrr1. Lett Appl Microbiol 2024; 77:ovae126. [PMID: 39657312 DOI: 10.1093/lambio/ovae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Vibrio alginolyticus, the causative agent of aquatic vertebrates and invertebrates, can cause severe infections (e.g. septicemia, gill necrosis, and surface ulcers) and high mortality in aquatic organisms, leading to serious economic losses in global aquaculture. Small non-coding RNAs (sRNAs), emerging modulators of gene expression, played vital regulatory roles in virulence, pathogenicity, and physiological metabolism of bacteria. In this work, the modulation of physiological functions and metabolome of V. alginolyticus by the quorum-regulatory sRNA, Qrr1, was figured out. We found that the deletion of qrr1 induced significant cell shape elongation. Meanwhile, Qrr1 could inhibit the production of alkaline serine protease by weakening the expression of main regulator LuxR in the quorum sensing (QS) system. Moreover, the untargeted metabolomics and lipidomics approaches showed that most of nucleotides, organic acids, carbohydrates, and lipidome (both lipid content and category) were significantly altered in response to the qrr1 deletion. Spearman correlation analysis demonstrated that most of the intermediates involved in glutamate metabolism, sphingolipid metabolism, and glycerolipid metabolism displayed high correlations with cell virulence factors. These findings illuminate the mechanism of bacterial virulence regulation and further exploit potential therapeutic targets for virulence prevention in V. alginolyticus.
Collapse
Affiliation(s)
- Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Ruobing Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuan Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ningning Zhou
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiamin Ren
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wang Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rui Yu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Senhu Zhang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinfang Yang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Mashruwala AA, Bassler BL. Quorum sensing orchestrates parallel cell death pathways in Vibrio cholerae via Type 6 secretion-dependent and -independent mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2412642121. [PMID: 39499633 PMCID: PMC11573629 DOI: 10.1073/pnas.2412642121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication process that enables bacteria to coordinate group behaviors. In Vibrio cholerae colonies, a program of spatial-temporal cell death is among the QS-controlled traits. Cell death occurs in two phases, first along the colony rim, and subsequently, at the colony center. Both cell death phases are driven by the type 6 secretion system (T6SS). Here, we show that HapR, the master QS regulator, does not control t6ss gene expression nor T6SS-mediated killing activity. Nonetheless, a ΔhapR strain displays no cell death at the colony rim. RNA-Sequencing (RNA-Seq) analyses reveal that HapR activates expression of an operon containing four genes of unknown function, vca0646-0649. Epistasis and overexpression studies show that two of the genes, vca0646 and vca0647, are required to drive cell death in both a ΔhapR and a ΔhapR Δt6ss strain. Thus, vca0646-0649 are regulated by HapR but act independently of the T6SS machinery to cause cell death, suggesting that a second, parallel pathway to cell death exists in V. cholerae.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- HHMI, Chevy Chase, MD20815
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
3
|
Mashruwala AA, Bassler BL. Quorum sensing orchestrates parallel cell death pathways in Vibrio cholerae via Type 6 secretion dependent and independent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614608. [PMID: 39386452 PMCID: PMC11463680 DOI: 10.1101/2024.09.23.614608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Quorum sensing (QS) is a cell-to-cell communication process that enables bacteria to coordinate group behaviors. In Vibrio cholerae colonies, a program of spatial-temporal cell death is among the QS-controlled traits. Cell death occurs in two phases, first along the colony rim, and subsequently, at the colony center. Both cell death phases are driven by the type VI secretion system (T6SS). Here, we show that HapR, the master QS regulator, does not control t6ss gene expression nor T6SS-mediated killing activity. Nonetheless, a ΔhapR strain displays no cell death at the colony rim. RNA-Seq analyses reveal that HapR activates expression of an operon containing four genes of unknown function, vca0646-0649. Epistasis and overexpression studies show that two of the genes, vca0646 and vca0647, are required to drive cell death in both a ΔhapR and a ΔhapR Δt6ss strain. Thus, vca0646-0649 are regulated by HapR but act independently of the T6SS machinery to cause cell death, suggesting that a second, parallel pathway to cell death exists in V. cholerae.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Current address: The Stowers Institute for Medical Research, Kansas City, MO, 64110
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
5
|
Lorentzen ØM, Haukefer ASB, Johnsen PJ, Frøhlich C. The Biofilm Lifestyle Shapes the Evolution of β-Lactamases. Genome Biol Evol 2024; 16:evae030. [PMID: 38366392 PMCID: PMC10917518 DOI: 10.1093/gbe/evae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
The evolutionary relationship between the biofilm lifestyle and antibiotic resistance enzymes remains a subject of limited understanding. Here, we investigate how β-lactamases affect biofilm formation in Vibrio cholerae and how selection for a biofilm lifestyle impacts the evolution of these enzymes. Genetically diverse β-lactamases expressed in V. cholerae displayed a strong inhibitory effect on biofilm production. To understand how natural evolution affects this antagonistic pleiotropy, we randomly mutagenized a β-lactamase and selected for elevated biofilm formation. Our results revealed that biofilm evolution selects for β-lactamase variants able to hydrolyze β-lactams without inhibiting biofilms. Mutational analysis of evolved variants demonstrated that restoration of biofilm development was achieved either independently of enzymatic function or by actively leveraging enzymatic activity. Taken together, the biofilm lifestyle can impose a profound selective pressure on antimicrobial resistance enzymes. Shedding light on such evolutionary interplays is of importance to understand the factors driving antimicrobial resistance.
Collapse
Affiliation(s)
- Øyvind M Lorentzen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Pål J Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | | |
Collapse
|
6
|
Flores-Percino D, Osorio-Llanes E, Sepulveda Y, Castellar-López J, Madera RB, Rada WR, Meléndez CM, Mendoza-Torres E. Mechanisms of the Quorum Sensing Systems of Pseudomonas aeruginosa: Host and Bacteria. Curr Med Chem 2024; 31:5755-5767. [PMID: 37605403 DOI: 10.2174/0929867331666230821110440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Quorum-sensing is a communication mechanism between bacteria with the ability to activate signaling pathways in the bacterium and in the host cells. Pseudomonas aeruginosa is a pathogen with high clinical relevance due to its vast virulence factors repertory and wide antibiotic resistance mechanisms. Due to this, it has become a pathogen of interest for developing new antimicrobial agents in recent years. P. aeruginosa has three major QS systems that regulate a wide gene range linked with virulence factors, metabolic regulation, and environment adaption. Consequently, inhibiting this communication mechanism would be a strategy to prevent the pathologic progression of the infections caused by this bacterium. In this review, we aim to overview the current studies about the signaling mechanisms of the QS system of P. aeruginosa and its effects on this bacterium and the host.
Collapse
Affiliation(s)
- Diana Flores-Percino
- Department of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Estefanie Osorio-Llanes
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Yanireth Sepulveda
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Jairo Castellar-López
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Ricardo Belón Madera
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Department of Microbiology, Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Barranquilla, Colombia
| | - Carlos Mario Meléndez
- Department of Chemistry, Faculty of Basic Sciencies, Grupo de Investigación en Química Orgánica y Biomédica, Universidad del Atlántico, Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Department of Medicine, Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| |
Collapse
|
7
|
Hallatschek O, Datta SS, Drescher K, Dunkel J, Elgeti J, Waclaw B, Wingreen NS. Proliferating active matter. NATURE REVIEWS. PHYSICS 2023; 5:1-13. [PMID: 37360681 PMCID: PMC10230499 DOI: 10.1038/s42254-023-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA US
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Bartek Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry PAN, Warsaw, Poland
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|