1
|
Retnakumar RJ, Chettri P, Lamtha SC, Sivakumar KC, Dutta P, Sen P, Biswas S, Agarwal N, Nath AN, Devi TB, Thapa N, Tamang JP, Chattopadhyay S. Genome-wide accumulations of non-random adaptive point mutations drive westward evolution of Helicobacter pylori. BMC Microbiol 2025; 25:229. [PMID: 40263995 PMCID: PMC12013172 DOI: 10.1186/s12866-025-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND For last seven decades we remained convinced that the natural point mutations occur randomly in the genome of an organism. However, our whole genome sequence analyses show that for the gastric pathogen Helicobacter pylori, which causes peptic ulcer and gastric cancer, accumulations of point mutations in the genome are non-random and they contribute to its unidirectional evolution. Based on the oncoprotein CagA, the pathogen can be classified into Eastern (East Asian countries like China and Japan; high incidence of gastric cancer) and Western (Europe, Africa, South-West Asian countries like India; low incidence of gastric cancer) types. RESULTS We have found a unique high-altitude Himalayan region, Sikkim (an Indian state bordering China, Nepal and Bhutan), where the evolving Eastern and Western H. pylori types co-exist and show the signs of genetic admixtures. Here, we present genomic evidence for more virulent Eastern-H. pylori getting converted to less virulent Western-H. pylori by accumulating non-random adaptive point mutations. CONCLUSION The lesser virulence of the westernized H. pylori is beneficial since this pathogen typically remains colonized in the stomach for decades before causing terminal diseases like gastric cancer. Moreover, the mutation-driven westward evolution of H. pylori is a global phenomenon, which occurred in the geographical regions where people from Eastern and Western ethnicities met and cohabited. The identified evolution of virulent Eastern H. pylori strains to lesser virulent Western variants by accumulation of point mutations also provides insight into the pathogenic potentials of different H. pylori strains.
Collapse
Affiliation(s)
- R J Retnakumar
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Chettri
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Tadong, Sikkim, India
| | | | - K C Sivakumar
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Dutta
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Pahil Sen
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sanjit Biswas
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Barry Marshall Research Centre for Helicobacter pylori, Asian Institute of Gastroenterology, Telangana, 500032, Hyderabad, India
| | - Nikita Agarwal
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Angitha N Nath
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - T Barani Devi
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Namrata Thapa
- Biotech Hub, Department of Zoology, Nar Bahadur Bhandari Degree College, Tadong, Sikkim, India.
| | | | - Santanu Chattopadhyay
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
- Barry Marshall Research Centre for Helicobacter pylori, Asian Institute of Gastroenterology, Telangana, 500032, Hyderabad, India.
| |
Collapse
|
2
|
Zhu M, Xu X, Cai P, Wang T, Zhu M, Yan C, Pan Q, Chen C, Wu Y, Zhang G, Jin G. Global Population Structure, Virulence Factors and Antibiotic Resistance of Helicobacter pylori: A Pooled Analysis of 4067 Isolates From 76 Countries. Helicobacter 2025; 30:e70025. [PMID: 40059062 DOI: 10.1111/hel.70025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is a common pathogen that has co-evolved with the human host for approximately 100,000 years; however, our understanding of its population structure remains limited. Furthermore, the detailed characteristics of its virulence factors and antibiotic resistance for H. pylori are not yet fully elucidated. METHODS In this study, we curated a global genome dataset of 4067 H. pylori isolates from 76 countries and explored H. pylori characteristics, including population genetic structure, virulence factors, and antibiotic resistance. We used three approaches (fineSTRUCTURE, ADMIXTURE, and DAPC) to infer the population structure of H. pylori. We investigated the virulence of each isolate by calling genotypes of cagA and vacA and evaluated the correlations of virulence factors with subpopulation. For antibiotic resistance, we identified mutations to determine the genotypic antibiotic resistance. Then we estimated the prevalence of genotypic antibiotic resistance grouped by geographical location, subpopulation, and study period. RESULT We identified 21 subpopulations in 4067 H. pylori isolates, including 20 previously reported subpopulations and a novel subpopulation hspEuropeIsrael, and found that the population structure of H. pylori was geographically restricted. The novel subpopulation hspEuropeIsrael had a higher proportion of less virulent cagA and vacA genotypes compared to other subpopulations. After evaluating the rates of H. pylori genotypic resistance to four antibiotics, we found that the prevalence of genotypic resistance to amoxicillin and metronidazole was > 15% across all five continents. Genotypic resistance to levofloxacin was > 15% on all continents except for Oceania. Additionally, the genotypic resistance rate to clarithromycin was > 15% in Asia, Europe, and Oceania. A trend of increased genotypic resistance over time was observed in several continents during subgroup analyses. Furthermore, we constructed a comprehensive database for H. pylori, named Helicobacter Pylori Encyclopedia for Research (HELPER, http://ccra.njmu.edu.cn/helper). CONCLUSION Our results provide a detailed characterization of H. pylori and extend previous schemas. HELPER serves as an informative and comprehensive database that will be a valuable resource for researchers and lay the foundation for future studies on H. pylori.
Collapse
Affiliation(s)
- Mengyi Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xianfeng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pengpeng Cai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Institute of Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Immunology, Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, Nanjing, China
| | - Qianglong Pan
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Wu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Proença M, Tanoeiro L, Fox JG, Vale FF. Prophage dynamics in gastric and enterohepatic environments: unraveling ecological barriers and adaptive transitions. ISME COMMUNICATIONS 2025; 5:ycaf017. [PMID: 39981300 PMCID: PMC11840440 DOI: 10.1093/ismeco/ycaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Phage predation plays a critical role in shaping bacterial genetic diversity, with prophages playing a comparable role. However, the prevalence and genetic variability of prophages within the Helicobacter genus remain inadequately studied. Helicobacter species are clinically significant and occupy distinct digestive system regions, with gastric species (e.g. Helicobacter pylori) residing in the gastric mucosa and enterohepatic species colonizing the liver and intestines of various vertebrates. Here, we address this knowledge gap by analyzing prophage presence and diversity across 343 non-pylori Helicobacter genomes, mapping their distribution, comparing genomic features between gastric and enterohepatic prophages, and exploring their evolutionary relationships with hosts. We identified and analyzed a catalog of 119 new complete and 78 incomplete prophages. Our analysis reveals significant differences between gastric and enterohepatic species. Gastric prophages exhibit high synteny, and cluster in a few groups, indicating a more conserved genetic structure. In contrast, enterohepatic prophages show greater diversity in gene order and content, reflecting their adaptation to varied host environments. Helicobacter cinaedi stands out, harboring a large number of prophages among the enterohepatic species, forming a distinct cohesive group. Phylogenetic analyses reveal a co-evolutionary relationship between several prophages and their bacterial hosts-though exceptions, such as the enterohepatic prophages from H. canis, H. equorum, H. jaachi, and the gastric prophage from H. himalayensis-suggesting more complex co-evolutionary dynamics like host jumps, recombination, and horizontal gene transfer. The insights gained from this study enhance our understanding of prophage dynamics in Helicobacter, emphasizing their role in bacterial adaptation, virulence, and host specificity.
Collapse
Affiliation(s)
- Marta Proença
- Pathogen Genomics and Translational Microbiology Lab, BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Luís Tanoeiro
- Pathogen Genomics and Translational Microbiology Lab, BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, United States
| | - Filipa F Vale
- Pathogen Genomics and Translational Microbiology Lab, BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
4
|
Tourrette E, Torres RC, Svensson SL, Matsumoto T, Miftahussurur M, Fauzia KA, Alfaray RI, Vilaichone RK, Tuan VP, Wang D, Yadegar A, Olsson LM, Zhou Z, Yamaoka Y, Thorell K, Falush D. An ancient ecospecies of Helicobacter pylori. Nature 2024; 635:178-185. [PMID: 39415013 PMCID: PMC11541087 DOI: 10.1038/s41586-024-07991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2024] [Indexed: 10/18/2024]
Abstract
Helicobacter pylori disturbs the stomach lining during long-term colonization of its human host, with sequelae including ulcers and gastric cancer1,2. Numerous H. pylori virulence factors have been identified, showing extensive geographic variation1. Here we identify a 'Hardy' ecospecies of H. pylori that shares the ancestry of 'Ubiquitous' H. pylori from the same region in most of the genome but has nearly fixed single-nucleotide polymorphism differences in 100 genes, many of which encode outer membrane proteins and host interaction factors. Most Hardy strains have a second urease, which uses iron as a cofactor rather than nickel3, and two additional copies of the vacuolating cytotoxin VacA. Hardy strains currently have a limited distribution, including in Indigenous populations in Siberia and the Americas and in lineages that have jumped from humans to other mammals. Analysis of polymorphism data implies that Hardy and Ubiquitous coexisted in the stomachs of modern humans since before we left Africa and that both were dispersed around the world by our migrations. Our results also show that highly distinct adaptive strategies can arise and be maintained stably within bacterial populations, even in the presence of continuous genetic exchange between strains.
Collapse
Affiliation(s)
- Elise Tourrette
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Roberto C Torres
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Sarah L Svensson
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | | | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Universitas Airlangga, Surabaya, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Universitas Airlangga, Surabaya, Indonesia
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine and Center of Excellence in Digestive Diseases, Thammasat University, Bangkok, Thailand
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
- Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Difei Wang
- Cancer Genomics Research Lab, Frederick National Lab for Cancer Research, Rockville, MD, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lisa M Olsson
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zhemin Zhou
- Pasteurien College, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.
- Universitas Airlangga, Surabaya, Indonesia.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
- Research center for global and local infectious diseases, Oita University, Yufu, Japan.
| | - Kaisa Thorell
- Department of Chemistry and Molecular Biology, Faculty of Science, University of Gothenburg, Gothenburg, Sweden.
| | - Daniel Falush
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Fang Y, Jiang S, Zhou X, Zhou W, Jiang X, Chen L, Wang M, Chen Y, Li L. Whole-genome sequencing analyses and antibiotic resistance situation of 48 Helicobacter pylori strains isolated in Zhejiang, China. Gut Pathog 2024; 16:62. [PMID: 39444024 PMCID: PMC11515586 DOI: 10.1186/s13099-024-00656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
PURPOSE In the Zhejiang region, research on Helicobacter pylori is lacking. The purpose of this study was to assess the extent of antibiotic resistance in H. pylori in this region, explore alternative methods for predicting the resistance patterns of H. pylori, and investigate the colonization of native gastric mucosa by other clades of H. pylori in the structure population of this bacterium. METHODS Strains were cultured under microaerobic conditions, and antimicrobial susceptibility testing (AST) was performed via agar dilution. Whole-genome sequencing (WGS) was performed via next-generation sequencing (NGS) technology. Epidemiological data including data from this study and reported articles from Zhejiang, China, were included. Further analyses based on AST, WGS, and epidemiological date include virulence genes, antibiotic resistance-related mutations, and phylogenetic trees based on 7 housekeeping genes and core-genome single nucleotide polymorphisms (SNPs). RESULTS The bacterial isolates in this study presented higher antibiotic resistance rates than previously reported, especially against levofloxacin and clarithromycin. The point mutation A2147G in 23 S rRNA is specific to clarithromycin resistance. Mutations at position/s 87 and/or 91 of the gyrA gene amino acid sequence are highly consistent with levofloxacin resistance highly. The point mutations C1707T in 23 S rRNA and E463K in the gyrB gene have not been previously documented in China. All the bacterial isolates belong to Asian branches in the structure population. The resistance rate to clarithromycin of isolates from hosts born after January 1, 1977 is statistically higher than that of hosts born before 1977. CONCLUSION Eradication therapy based on AST results is urgently needed in Zhejiang. The point mutation A2147G in 23 S rRNA and point mutations in the gyrA gene at amino acid/s 87 and/or 91 are sufficient for predicting resistance to clarithromycin and levofloxacin, respectively. The isolate with the mutation E463K in the gyrB gene represents a significant contribution to the field. Mutations in 23 S rRNA may offer valuable insights into the dynamics of H. pylori transmission among hosts.
Collapse
Affiliation(s)
- Yunhui Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Xinrong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Lifeng Chen
- Department of Medical Engineering and Material Supplies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Mengting Wang
- Zhejiang University of Finance & Economics, Hangzhou, Zhejiang Province, China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou City, 310003, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China.
| |
Collapse
|
6
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
7
|
Alvarez-Aldana A, Ikhimiukor OO, Guaca-González YM, Montoya-Giraldo M, Souza SSR, Buiatte ABG, Andam CP. Genomic insights into the antimicrobial resistance and virulence of Helicobacter pylori isolates from gastritis patients in Pereira, Colombia. BMC Genomics 2024; 25:843. [PMID: 39251950 PMCID: PMC11382513 DOI: 10.1186/s12864-024-10749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Helicobacter pylori infects the stomach and/or small intestines in more than half of the human population. Infection with H. pylori is the most common cause of chronic gastritis, which can lead to more severe gastroduodenal pathologies such as peptic ulcer, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. H. pylori infection is particularly concerning in Colombia in South America, where > 80% of the population is estimated to be infected with H. pylori and the rate of stomach cancer is one of the highest in the continent. RESULTS We compared the antimicrobial susceptibility profiles and short-read genome sequences of five H. pylori isolates obtained from patients diagnosed with gastritis of varying severity (chronic gastritis, antral erosive gastritis, superficial gastritis) in Pereira, Colombia sampled in 2015. Antimicrobial susceptibility tests revealed the isolates to be resistant to at least one of the five antimicrobials tested: four isolates were resistant to metronidazole, two to clarithromycin, two to levofloxacin, and one to rifampin. All isolates were susceptible to tetracycline and amoxicillin. Comparative genome analyses revealed the presence of genes associated with efflux pump, restriction modification systems, phages and insertion sequences, and virulence genes including the cytotoxin genes cagA and vacA. The five genomes represent three novel sequence types. In the context of the Colombian and global populations, the five H. pylori isolates from Pereira were phylogenetically distant to each other but were closely related to other lineages circulating in the country. CONCLUSIONS H. pylori from gastritis of different severity varied in their antimicrobial susceptibility profiles and genome content. This knowledge will be useful in implementing appropriate eradication treatment regimens for specific types of gastritis. Understanding the genetic and phenotypic heterogeneity in H. pylori across the geographical landscape is critical in informing health policies for effective disease prevention and management that is most effective at local and country-wide scales. This is especially important in Colombia and other South American countries that are poorly represented in global genomic surveillance studies of bacterial pathogens.
Collapse
Affiliation(s)
- Adalucy Alvarez-Aldana
- Grupo de Investigación en Microbiología y Biotecnología (MICROBIOTEC), Universidad Libre Seccional Pereira, Programa de Microbiología, Pereira, Colombia
- Grupo de Investigación en Enfermedades Infecciosas (GRIENI), Universidad Tecnológica de Pereira, Programa de Medicina, Pereira, Colombia
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Yina Marcela Guaca-González
- Grupo de Investigación en Microbiología y Biotecnología (MICROBIOTEC), Universidad Libre Seccional Pereira, Programa de Microbiología, Pereira, Colombia
- Grupo de Investigación en Enfermedades Infecciosas (GRIENI), Universidad Tecnológica de Pereira, Programa de Medicina, Pereira, Colombia
| | - Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ana Beatriz Garcez Buiatte
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
8
|
Liu X, Chen Q, Xu S, Wu J, Zhao J, He Z, Pan A, Wu J. A Prototype of Graphene E-Nose for Exhaled Breath Detection and Label-Free Diagnosis of Helicobacter Pylori Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401695. [PMID: 38965802 PMCID: PMC11425842 DOI: 10.1002/advs.202401695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Helicobacter pylori (HP), a common microanaerobic bacteria that lives in the human mouth and stomach, is reported to infect ≈50% of the global population. The current diagnostic methods for HP are either invasive, time-consuming, or harmful. Therefore, a noninvasive and label-free HP diagnostic method needs to be developed urgently. Herein, reduced graphene oxide (rGO) is composited with different metal-based materials to construct a graphene-based electronic nose (e-nose), which exhibits excellent sensitivity and cross-reactive response to several gases in exhaled breath (EB). Principal component analysis (PCA) shows that four typical types of gases in EB can be well discriminated. Additionally, the potential of the e-nose in label-free detection of HP infection is demonstrated through the measurement and analysis of EB samples. Furthermore, a prototype of an e-nose device is designed and constructed for automatic EB detection and HP diagnosis. The accuracy of the prototype machine integrated with the graphene-based e-nose can reach 92% and 91% in the training and validation sets, respectively. These results demonstrate that the highly sensitive graphene-based e-nose has great potential for the label-free diagnosis of HP and may become a novel tool for non-invasive disease screening and diagnosis.
Collapse
Affiliation(s)
- Xuemei Liu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Qiaofen Chen
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
- Will‐think Sensing Technology Co., LTDHangzhou310030China
| | - Shiyuan Xu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jiaying Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Zhengfu He
- Department of Thoracic SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
| | - Aiwu Pan
- Department of Internal MedicineThe Second Affiliated Hospital of Zhejiang UniversityHangzhou310003China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic‐based DiagnosticsInstitute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
9
|
Global spread of Salmonella enterica due to centralized industrialization of pig farming. NATURE FOOD 2024; 5:363-364. [PMID: 38755345 DOI: 10.1038/s43016-024-00969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
10
|
Thorell K, Muñoz-Ramírez ZY, Wang D, Sandoval-Motta S, Boscolo Agostini R, Ghirotto S, Torres RC, Falush D, Camargo MC, Rabkin CS. The Helicobacter pylori Genome Project: insights into H. pylori population structure from analysis of a worldwide collection of complete genomes. Nat Commun 2023; 14:8184. [PMID: 38081806 DOI: 10.1038/s41467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 09/17/2024] Open
Abstract
Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Zilia Y Muñoz-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, México
| | - Difei Wang
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Santiago Sandoval-Motta
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
- Consejo Nacional de Ciencia y Tecnologia, Cátedras CONACYT, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto C Torres
- Centre for Microbes Development and Health, Institute Pasteur Shanghai, Shanghai, China
| | - Daniel Falush
- Centre for Microbes Development and Health, Institute Pasteur Shanghai, Shanghai, China
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
11
|
Thorell K, Muñoz-Ramírez ZY, Wang D, Sandoval-Motta S, Boscolo Agostini R, Ghirotto S, Torres RC, Falush D, Camargo MC, Rabkin CS. The Helicobacter pylori Genome Project: insights into H. pylori population structure from analysis of a worldwide collection of complete genomes. Nat Commun 2023; 14:8184. [PMID: 38081806 PMCID: PMC10713588 DOI: 10.1038/s41467-023-43562-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics.
Collapse
Affiliation(s)
- Kaisa Thorell
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Zilia Y Muñoz-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Chihuahua, México
| | - Difei Wang
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Santiago Sandoval-Motta
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
- Consejo Nacional de Ciencia y Tecnologia, Cátedras CONACYT, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Roberto C Torres
- Centre for Microbes Development and Health, Institute Pasteur Shanghai, Shanghai, China
| | - Daniel Falush
- Centre for Microbes Development and Health, Institute Pasteur Shanghai, Shanghai, China
| | - M Constanza Camargo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Charles S Rabkin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
12
|
Ailloud F, Gottschall W, Suerbaum S. Methylome evolution suggests lineage-dependent selection in the gastric pathogen Helicobacter pylori. Commun Biol 2023; 6:839. [PMID: 37573385 PMCID: PMC10423294 DOI: 10.1038/s42003-023-05218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The bacterial pathogen Helicobacter pylori, the leading cause of gastric cancer, is genetically highly diverse and harbours a large and variable portfolio of restriction-modification systems. Our understanding of the evolution and function of DNA methylation in bacteria is limited. Here, we performed a comprehensive analysis of the methylome diversity in H. pylori, using a dataset of 541 genomes that included all known phylogeographic populations. The frequency of 96 methyltransferases and the abundance of their cognate recognition sequences were strongly influenced by phylogeographic structure and were inter-correlated, positively or negatively, for 20% of type II methyltransferases. Low density motifs were more likely to be affected by natural selection, as reflected by higher genomic instability and compositional bias. Importantly, direct correlation implied that methylation patterns can be actively enriched by positive selection and suggests that specific sites have important functions in methylation-dependent phenotypes. Finally, we identified lineage-specific selective pressures modulating the contraction and expansion of the motif ACGT, revealing that the genetic load of methylation could be dependent on local ecological factors. Taken together, natural selection may shape both the abundance and distribution of methyltransferases and their specific recognition sequences, likely permitting a fine-tuning of genome-encoded functions not achievable by genetic variation alone.
Collapse
Affiliation(s)
- Florent Ailloud
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Wilhelm Gottschall
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sebastian Suerbaum
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
13
|
Suerbaum S, Ailloud F. Genome and population dynamics during chronic infection with Helicobacter pylori. Curr Opin Immunol 2023; 82:102304. [PMID: 36958230 DOI: 10.1016/j.coi.2023.102304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
Helicobacter pylori is responsible for one of the most prevalent bacterial infections worldwide. Chronic infection typically leads to chronic active gastritis. Clinical sequelae, including peptic ulcers, mucosa-associated lymphoid tissue lymphoma or, most importantly, gastric adenocarcinoma develop in 10-15% of cases. H. pylori is characterized by extensive inter-strain diversity which is the result of a high mutation rate, recombination, and a large repertoire of restriction-modification systems. This diversity is thought to be a major contributor to H. pylori's persistence and exceptional aptitude to adapt to the gastric environment and evade the immune system. This review covers efforts in the last decade to characterize and understand the multiple layers of H. pylori's diversity in different biological contexts.
Collapse
Affiliation(s)
- Sebastian Suerbaum
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany; German National Reference Centre for Helicobacter pylori, Pettenkoferstr. 9a, 80336 Munich, Germany.
| | - Florent Ailloud
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany; DZIF German Centre for Infection Research, Munich Partner Site, Pettenkoferstr. 9a, 80336 Munich, Germany
| |
Collapse
|
14
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|