1
|
Cam V, Sag E, Bilginer Y, Ozen S. A case with systemic juvenile idiopathic arthritis treated with tofacitinib and rapamycin. Rheumatology (Oxford) 2025; 64:2315-2316. [PMID: 39579141 PMCID: PMC11962887 DOI: 10.1093/rheumatology/keae637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Affiliation(s)
- Veysel Cam
- Division of Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Erdal Sag
- Division of Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Yelda Bilginer
- Division of Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| | - Seza Ozen
- Division of Rheumatology, Department of Pediatrics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Nigrovic PA. Macrophage Activation Syndrome. Arthritis Rheumatol 2025; 77:367-379. [PMID: 39491365 DOI: 10.1002/art.43052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Macrophage activation syndrome (MAS) is a state of immune hyperactivation that can result in life-threatening multisystem end-organ dysfunction. Often termed a "cytokine storm," MAS occurs among the rheumatic diseases most typically in Still's disease but also in systemic lupus erythematosus and Kawasaki disease. MAS can also accompany infection, malignancy, and inborn errors of immunity. This review provides a practical, evidence-based guide to the understanding, recognition, and management of MAS in children and adults, with a primary focus on MAS complicating Still's disease.
Collapse
Affiliation(s)
- Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Lam MT, Jiang CL, Lee PY. T-ing up the storm: pathogenic cycling lymphocytes in the biology of macrophage activation syndrome. Pediatr Rheumatol Online J 2025; 23:29. [PMID: 40098189 PMCID: PMC11912701 DOI: 10.1186/s12969-025-01081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are potentially fatal cytokine storm syndromes with clinical features including fever, pancytopenia, hepatosplenomegaly, coagulopathy, and progressive multiorgan system dysfunction. Mechanistically, HLH / MAS are driven by persistent activation of lymphoid and myeloid cells, but our understanding of the pathogenic cell populations remains incomplete. MAIN BODY In this Perspectives article, we provide an overview of the biology of HLH / MAS and the critical role of interferon-g in disease pathogenesis. We discuss the recent discovery of cycling lymphocytes in HLH / MAS marked by expression of CD38 and HLA-DR, which are primary producers of IFN-γ. The expansion of cycling lymphocytes correlates with disease activity and helps to distinguish HLH / MAS from clinical mimics. We demonstrate an approach to quantify CD38+HLA-DR+ cycling lymphocytes and evaluate their utility as a diagnostic biomarker for HLH / MAS. Lastly, we discuss the treatment of MAS, including potential therapeutic options to target these pathogenic lymphocytes. CONCLUSION Understanding of biology of cycling lymphocytes in HLH / MAS will facilitate the development of novel therapeutic approaches to overcome these fatal hyperinflammatory disorders.
Collapse
Affiliation(s)
- Michael T Lam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Connie L Jiang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Boston Combined Residency Program, Boston Children's Hospital and Boston Medical Center, Boston, MA, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Shen Y, Jia J, Teng J, Yang C, Hu Q. Advancing personalised precision treatment for Still's disease based on molecular characteristics and disease progression. THE LANCET. RHEUMATOLOGY 2025; 7:e127-e140. [PMID: 39433056 DOI: 10.1016/s2665-9913(24)00225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 10/23/2024]
Abstract
Still's disease, a systemic autoinflammatory disorder with a classic multigenetic background, is characterised by polyarthritis, high-spiking fever, salmon-like evanescent skin rash, and hyperferritinaemia. Although the exact cause of Still's disease remains unclear, it is believed to be influenced by genetic factors, infections, and immune dysregulation. Current studies indicate that neutrophils and macrophages play crucial roles in the pathogenesis of Still's disease, along with involvement of natural killer cells, T cells, and B cells. Advances in biologic agents have expanded treatment strategies beyond conventional approaches, with cytokine-targeted agents showing promise in the management of Still's disease. Some cytokine-targeting biologic agents can be developed based on clinical manifestations, complications, immune cells, and molecular networks. Emphasis of immunophenotyping for precise clinical subtyping and targeted molecular therapies based on these findings is crucial for optimising treatment outcomes. In this Review, we discuss the latest advancements in the understanding of Still's disease pathogenesis and corresponding therapeutic approaches.
Collapse
Affiliation(s)
- Yujie Shen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Kessel C, Rossig C, Abken H. Weal and woe of interleukin-18 in the T cell therapy of cancer. J Immunother Cancer 2025; 13:e010545. [PMID: 39809514 PMCID: PMC11749219 DOI: 10.1136/jitc-2024-010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy of solid cancer remains below expectations; adding cytokine help through IL-18 has shown remarkable efficacy in first clinical trials. As IL-18 is also a powerful driver of hyperinflammatory conditions, we discuss to what extent unleashing IL-18 is a double-edged sword in CAR T cell therapies.
Collapse
Affiliation(s)
- Christoph Kessel
- Translational Inflammation Research, Department of Pediatric Rheumatology & Immunology, University of Münster Faculty of Medicine, Munster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Munster, Germany
- Prinses Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hinrich Abken
- Division Genetic Immunotherapy, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Universitätsklinikum Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Schnell JT, Briviesca RL, Kim T, Charbonnier LM, Henderson LA, van Wijk F, Nigrovic PA. The 'T reg paradox' in inflammatory arthritis. Nat Rev Rheumatol 2025; 21:9-21. [PMID: 39653758 DOI: 10.1038/s41584-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Classic regulatory T (Treg) cells expressing CD4 and the hallmark transcription factor FOXP3 are integral to the prevention of multi-system autoimmunity. However, immune-mediated arthritis is often associated with increased numbers of Treg cells in the inflamed joints. To understand these seemingly conflicting observations, which we collectively describe as 'the Treg paradox', we provide an overview of Treg cell biology with a focus on Treg cell heterogeneity, function and dysfunction in arthritis. We discuss how the inflamed environment constrains the immunosuppressive activity of Treg cells while also promoting the differentiation of TH17-like Treg cell, exTreg cell (effector T cells that were formerly Treg cells), and osteoclastogenic Treg cell subsets that mediate tissue injury. We present a new framework to understand Treg cells in joint inflammation and define potential strategies for Treg cell-directed interventions in human inflammatory arthritis.
Collapse
Affiliation(s)
- Julia T Schnell
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter A Nigrovic
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
Kaya MN, Kılıç Ö, Güneş EÇ, Tecer D, Yılmaz S. Indices and ferritin level that predict organ involvement in adult-onset Still's disease. Biomark Med 2024; 18:899-906. [PMID: 39317410 PMCID: PMC11508950 DOI: 10.1080/17520363.2024.2403330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: The aim of the study is to evaluate whether C-reactive protein to albumin ratio (CAR), lactate dehydrogenase to albumin ratio (LAR), ferritin to erythrocyte sedimentation rate ratio (FER), systemic immune-inflammation index (SII), prognostic nutritional index (PNI) indices and ferritin level can predict organ involvement in adult-onset Still's disease (AOSD) patients.Methods: This study was planned as a cross-sectional study. Univariate and multivariate logistic regression analyses were performed to evaluate the usefulness of ferritin level and inflammatory indices in defining organ involvement.Results: Sixty-one patients diagnosed with AOSD were included in this study. Multivariate logistic regression analyzes showed that LAR (OR 1.028, 95% CI: 1.011-1.044) (p = 0.001) index predicted lymphadenopathy involvement, CAR (OR 1.249, 95% CI: 1.087-1.435) (p = 0.002) index predicted hepatomegaly involvement, ferritin level (OR 1.004, 95% CI: 1.001-1.008) (p = 0.007) predicted splenomegaly involvement, FER (OR 1.085, 95% CI: 1.012-1.164) (p = 0.021) and PNI (OR 0.271, 95% CI: 1.132-0.553) (p < 0.001) index predicted the occurrence of serositis.Conclusion: This study showed that ferritin level, CAR, FER, PNI and LAR markers may predict organ involvement at diagnosis in AOSD patients.
Collapse
Affiliation(s)
- Mehmet Nur Kaya
- University of Health Sciences Turkey, Gülhane Training & Research Hospital, Rheumatology Department, Ankara, 38100, Turkey
| | - Özlem Kılıç
- University of Health Sciences Turkey, Gülhane Training & Research Hospital, Rheumatology Department, Ankara, 38100, Turkey
| | - Ezgi Çimen Güneş
- University of Health Sciences Turkey, Gülhane Training & Research Hospital, Rheumatology Department, Ankara, 38100, Turkey
| | - Duygu Tecer
- University of Health Sciences Turkey, Gülhane Training & Research Hospital, Rheumatology Department, Ankara, 38100, Turkey
| | - Sedat Yılmaz
- University of Health Sciences Turkey, Gülhane Training & Research Hospital, Rheumatology Department, Ankara, 38100, Turkey
| |
Collapse
|
8
|
Yu P, Li Y, Fu W, Yu X, Sui D, Xu H, Sun W. Microglia Caspase11 non-canonical inflammasome drives fever. Acta Physiol (Oxf) 2024; 240:e14187. [PMID: 38864370 DOI: 10.1111/apha.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
AIM Animals exhibit physiological changes designed to eliminate the perceived danger, provoking similar symptoms of fever. However, a high-grade fever indicates poor clinical outcomes. Caspase11 (Casp11) is involved in many inflammatory diseases. Whether Casp11 leads to fever remains unclear. In this study, we investigate the role of the preoptic area of the hypothalamus (PO/AH) microglia Casp11 in fever. METHODS We perform experiments using a rat model of LPS-induced fever. We measure body temperature and explore the functions of peripheral macrophages and PO/AH microglia in fever signaling by ELISA, immunohistochemistry, immunofluorescence, flow cytometry, macrophage depletion, protein blotting, and RNA-seq. Then, the effects of macrophages on microglia in a hyperthermic environment are observed in vitro. Finally, adeno-associated viruses are used to knockdown or overexpress microglia Casp11 in PO/AH to determine the role of Casp11 in fever. RESULTS We find peripheral macrophages and PO/AH microglia play important roles in the process of fever, which is proved by macrophage and microglia depletion. By RNA-seq analysis, we find Casp11 expression in PO/AH is significantly increased during fever. Co-culture and conditioned-culture simulate the induction of microglia Casp11 activation by macrophages in a non-contact manner. Microglia Casp11 knockdown decreases body temperature, pyrogenic factors, and inflammasome, and vice versa. CONCLUSION We report that Casp11 drives fever. Mechanistically, peripheral macrophages transmit immune signals via cytokines to microglia in PO/AH, which activate the Casp11 non-canonical inflammasome. Our findings identify a novel player, the microglia Casp11, in the control of fever, providing an explanation for the transmission and amplification of fever immune signaling.
Collapse
Affiliation(s)
- Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Cancer Center, The First Hospital, Jilin University, Changchun, China
| | - Wenwen Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Weilun Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
9
|
Correia Marques M, Ombrello MJ, Schulert GS. New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis. Expert Rev Clin Immunol 2024; 20:1053-1064. [PMID: 38641907 PMCID: PMC11303111 DOI: 10.1080/1744666x.2024.2345868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory condition with onset in childhood. It is sporadic, but elements of its stereotypical innate immune responses are likely genetically encoded by both common variants with small effect sizes and rare variants with larger effects. AREAS COVERED Genomic investigations have defined the unique genetic architecture of sJIA. Identification of the class II HLA locus as the strongest sJIA risk factor for the first time brought attention to T lymphocytes and adaptive immune mechanisms in sJIA. The importance of the human leukocyte antigen (HLA) locus was reinforced by recognition that HLA-DRB1*15 alleles are strongly associated with development of drug reactions and sJIA-associated lung disease (sJIA-LD). At the IL1RN locus, genetic variation relates to both risk of sJIA and may also predict non-response to anakinra. Finally, rare genetic variants may have critical roles in disease complications, such as homozygous LACC1 mutations in families with an sJIA-like illness, and hemophagocytic lymphohistiocytosis (HLH) gene variants in some children with macrophage activation syndrome (MAS). EXPERT OPINION Genetic and genomic analysis of sJIA holds great promise for both basic discovery of the course and complications of sJIA, and may help guide personalized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Mariana Correia Marques
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Çam V, Ercan Emreol H, Ozen S. New and future perspectives in familial Mediterranean fever and other autoinflammatory diseases. Arch Rheumatol 2024; 39:331-338. [PMID: 39507834 PMCID: PMC11537678 DOI: 10.46497/archrheumatol.2024.10911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024] Open
Abstract
Systemic autoinflammatory diseases are a group of disorders characterized by sterile episodes of inflammation resulting from defects in the innate immune system. In contrast to classical autoimmune diseases, where circulating autoantibodies and the adaptive immune system are involved, these conditions involve excessive presence of proinflammatory cytokines leading to inflammatory attacks. Excessive cytokine production, functional mutations in regulatory pathways, excessive interferon production, defects in the nuclear factor-kappa B signaling pathway, abnorARCHmal protein folding, and complement activation are the mechanisms leading to autoinflammatory diseases. A defect in the mTOR pathway and trained immunity are newly discovered possible causes in pathogenesis. Early onset and severe forms of classical rheumatological diseases have been more frequently associated with autoinflammatory diseases in the last decade. Therefore, monogenic autoinflammatory diseases should be considered in rheumatic diseases with family history, consanguinity, early onset, and severe disease. The combination of functional and genotyping research will help to identify unclassified patients. The optimal treatment strategy remains uncertain, functional studies such as interferon signature and cytokine profiling, may prove valuable in guiding the treatment process. Stem cell transplantation strategies in autoinflammatory diseases with partial response to biological therapies can be considered. Autoinflammatory diseases are becoming increasingly complex and are bringing new perspectives to already known rheumatic diseases. Although we have effective treatments, we are still far from personalized recommendations.
Collapse
Affiliation(s)
- Veysel Çam
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Hülya Ercan Emreol
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
11
|
Berner K, Oz N, Kaya A, Acharjee A, Berner J. mTORC1 activation in presumed classical monocytes: observed correlation with human size variation and neuropsychiatric disease. Aging (Albany NY) 2024; 16:11134-11150. [PMID: 39068671 PMCID: PMC11315394 DOI: 10.18632/aging.206033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gain of function disturbances in nutrient sensing are likely the largest component in human age-related disease. Mammalian target of rapamycin complex 1 (mTORC1) activity affects health span and longevity. The drugs ketamine and rapamycin are effective against chronic pain and depression, and both affect mTORC1 activity. Our objective was to measure phosphorylated p70S6K, a marker for mTORC1 activity, in individuals with psychiatric disease to determine whether phosphorylated p70S6K could predict medication response. METHODS Twenty-seven females provided blood samples in which p70S6K and phosphorylated p70S6K were analyzed. Chart review gathered biometric measurements, clinical phenotypes, and medication response. Questionnaires assessed anxiety, depression, autism traits, and mitochondrial dysfunction, to determine neuropsychiatric disease profiles. Univariate and multivariate statistical analyses were used to identify predictors of medication response. RESULTS mTORC1 activity correlated highly with both classical biometrics (height, macrocephaly, pupil distance) and specific neuropsychiatric disease profiles (anxiety and autism). Across all cases, phosphorylated p70S6K was the best predictor for ketamine response, and also the best predictor for rapamycin response in a single instance. CONCLUSIONS The data illustrate the importance of mTORC1 activity in both observable body structure and medication response. This report suggests that a simple assay may allow cost-effective prediction of medication response.
Collapse
Affiliation(s)
- Karl Berner
- Woodinville Psychiatric Associates, Woodinville, WA 98072, USA
| | - Naci Oz
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Animesh Acharjee
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- MRC Health Data Research UK (HDR UK), London, UK
| | - Jon Berner
- Woodinville Psychiatric Associates, Woodinville, WA 98072, USA
| |
Collapse
|
12
|
Esmaeili-Ghahfarokhi M, Kim BH, Bozorgnia F. Adult-Onset Still's Disease: An Atypical Presentation Refractory to Standard Treatment. Cureus 2024; 16:e64369. [PMID: 39130970 PMCID: PMC11316915 DOI: 10.7759/cureus.64369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
A previously healthy young female of Southeast Asian descent presented with a two-week history of polyarthritis, urticarial rash, sore throat, and 8.6 kg of unintentional weight loss. The initial workup revealed a positive parvovirus B19 polymerase chain reaction with hyperferritinemia. The patient was diagnosed with adult-onset Still's disease (AOSD) secondary to parvovirus B19 infection. Bone marrow biopsy also showed evidence of hemophagocytic lymphohistiocytosis. Viral and bacterial infections may trigger AOSD in genetically susceptible hosts either via an unknown mechanism or by direct cytotoxic effect. This case shows an atypical presentation of AOSD, as well as the challenge in diagnosing and treating AOSD complicated by macrophage activation syndrome refractory to standard treatment.
Collapse
Affiliation(s)
| | - Brandon H Kim
- Rheumatology, University of California Irvine Medical Center, Orange, USA
| | - Farshid Bozorgnia
- Rheumatology, University of California Irvine Medical Center, Orange, USA
| |
Collapse
|
13
|
Dong Y, Wang T, Wu H. Heterogeneity of macrophage activation syndrome and treatment progression. Front Immunol 2024; 15:1389710. [PMID: 38736876 PMCID: PMC11082376 DOI: 10.3389/fimmu.2024.1389710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a rare complication of autoimmune inflammatory rheumatic diseases (AIIRD) characterized by a progressive and life-threatening condition with features including cytokine storm and hemophagocytosis. Predisposing factors are typically associated with microbial infections, genetic factors (distinct from typical genetically related hemophagocytic lymphohistiocytosis (HLH)), and inappropriate immune system overactivation. Clinical features include unremitting fever, generalized rash, hepatosplenomegaly, lymphadenopathy, anemia, worsening liver function, and neurological involvement. MAS can occur in various AIIRDs, including but not limited to systemic juvenile idiopathic arthritis (sJIA), adult-onset Still's disease (AOSD), systemic lupus erythematosus (SLE), Kawasaki disease (KD), juvenile dermatomyositis (JDM), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), etc. Although progress has been made in understanding the pathogenesis and treatment of MAS, it is important to recognize the differences between different diseases and the various treatment options available. This article summarizes the cell types and cytokines involved in MAS-related diseases, the heterogeneity, and treatment options, while also comparing it to genetically related HLH.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Wang
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Ruscitti P, Cantarini L, Nigrovic PA, McGonagle D, Giacomelli R. Recent advances and evolving concepts in Still's disease. Nat Rev Rheumatol 2024; 20:116-132. [PMID: 38212542 DOI: 10.1038/s41584-023-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Still's disease is a rare inflammatory syndrome that encompasses systemic juvenile idiopathic arthritis and adult-onset Still's disease, both of which can exhibit life-threatening complications, including macrophage activation syndrome (MAS), a secondary form of haemophagocytic lymphohistiocytosis. Genetic insights into Still's disease involve both HLA and non-HLA susceptibility genes, suggesting the involvement of adaptive immune cell-mediated immunity. At the same time, phenotypic evidence indicates the involvement of autoinflammatory processes. Evidence also implicates the type I interferon signature, mechanistic target of rapamycin complex 1 signalling and ferritin in the pathogenesis of Still's disease and MAS. Pathological entities associated with Still's disease include lung disease that could be associated with biologic DMARDs and with the occurrence of MAS. Historically, monophasic, recurrent and persistent Still's disease courses were recognized. Newer proposals of alternative Still's disease clusters could enable better dissection of clinical heterogeneity on the basis of immune cell profiles that could represent diverse endotypes or phases of disease activity. Therapeutically, data on IL-1 and IL-6 antagonism and Janus kinase inhibition suggest the importance of early administration in Still's disease. Furthermore, there is evidence that patients who develop MAS can be treated with IFNγ antagonism. Despite these developments, unmet needs remain that can form the basis for the design of future studies leading to improvement of disease management.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| |
Collapse
|
15
|
Vastert SJ, Canny SP, Canna SW, Schneider R, Mellins ED. Cytokine Storm Syndrome Associated with Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:323-353. [PMID: 39117825 DOI: 10.1007/978-3-031-59815-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cytokine storm syndrome (CSS) associated with systemic juvenile idiopathic arthritis (sJIA) has widely been referred to as macrophage activation syndrome (MAS). In this chapter, we use the term sJIA-associated CSS (sJIA-CSS) when referring to this syndrome and use the term MAS when referencing publications that specifically report on sJIA-associated MAS.
Collapse
Affiliation(s)
- Sebastiaan J Vastert
- Department of Paediatric Rheumatology & Immunology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susan P Canny
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Scott W Canna
- Department of Pediatrics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayfel Schneider
- Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth D Mellins
- Divisions of Human Gene Therapy and Allergy, Immunology & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Mangione MC, Wen J, Cao DJ. Mechanistic target of rapamycin in regulating macrophage function in inflammatory cardiovascular diseases. J Mol Cell Cardiol 2024; 186:111-124. [PMID: 38039845 PMCID: PMC10843805 DOI: 10.1016/j.yjmcc.2023.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 12/03/2023]
Abstract
The mechanistic target of rapamycin (mTOR) is evolutionarily conserved from yeast to humans and is one of the most fundamental pathways of living organisms. Since its discovery three decades ago, mTOR has been recognized as the center of nutrient sensing and growth, homeostasis, metabolism, life span, and aging. The role of dysregulated mTOR in common diseases, especially cancer, has been extensively studied and reported. Emerging evidence supports that mTOR critically regulates innate immune responses that govern the pathogenesis of various cardiovascular diseases. This review discusses the regulatory role of mTOR in macrophage functions in acute inflammation triggered by ischemia and in atherosclerotic cardiovascular disease (ASCVD) and heart failure with preserved ejection fraction (HFpEF), in which chronic inflammation plays critical roles. Specifically, we discuss the role of mTOR in trained immunity, immune senescence, and clonal hematopoiesis. In addition, this review includes a discussion on the architecture of mTOR, the function of its regulatory complexes, and the dual-arm signals required for mTOR activation to reflect the current knowledge state. We emphasize future research directions necessary to understand better the powerful pathway to take advantage of the mTOR inhibitors for innovative applications in patients with cardiovascular diseases associated with aging and inflammation.
Collapse
Affiliation(s)
- MariaSanta C Mangione
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinhua Wen
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dian J Cao
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; VA North Texas Health Care System, Dallas TX 75216, USA.
| |
Collapse
|
17
|
Di Cola I, Ruscitti P. The latest advances in the use of biological DMARDs to treat Still's disease. Expert Opin Biol Ther 2024; 24:63-75. [PMID: 38284774 DOI: 10.1080/14712598.2024.2307340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION Currently, the therapeutic management of Still's disease, a multisystemic inflammatory rare disorder, is directed to target the inflammatory symptoms and signs of patients. The treatment varies from glucocorticoids to disease-modifying antirheumatic drugs (DMARDs), both conventional synthetic and biological (bDMARDs). Usually, in refractory patients, bDMARDs are administered. AREAS COVERED Among bDMARDs, IL-1 and IL-6 inhibitors are frequently used, as data reported from both clinical trials and 'real-life' experiences. Recently, innovative therapeutic strategies have suggested an early administration of bDMARDs to increase the rate of clinical response and drug-free remission. Some new targets have been also proposed targeting IL-18, IFN-γ, and JAK/STAT pathway, which could be applied to Still's disease and its life-threatening evolution. EXPERT OPINION Many lines of evidence improved the knowledge about the therapeutic management of Still's disease with bDMARDs. However, many unmet needs may be still highlighted which could provide the basis to arrange further specific research in increasing the rate of clinical response. In fact, Still's disease remains a highly heterogeneous disease suggesting possible diverse underlying pathogenic mechanisms, at least partially, and consequent different therapeutic strategies. A better patient stratification may help in arranging specific studies to improve the long-term outcome of Still's disease.
Collapse
Affiliation(s)
- Ilenia Di Cola
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
18
|
Hinze CH, Foell D, Kessel C. Treatment of systemic juvenile idiopathic arthritis. Nat Rev Rheumatol 2023; 19:778-789. [PMID: 37923864 DOI: 10.1038/s41584-023-01042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is an inflammatory disease with hallmarks of severe systemic inflammation, which can be accompanied by arthritis. Contemporary scientific insights set this paediatric disorder on a continuum with its counterpart, adult-onset Still disease (AOSD). Patients with sJIA are prone to complications, including life-threatening hyperinflammation (macrophage activation syndrome (sJIA-MAS)) and sJIA-associated lung disease (sJIA-LD). Meanwhile, the treatment arsenal in sJIA has expanded markedly. State-of-the-art therapeutic approaches include biologic agents that target the IL-1 and IL-6 pathways. Beyond these, a range of novel agents are on the horizon, some of them already being used on a compassionate use basis, including JAK inhibitors and biologic agents that target IL-18, IFNγ, or IL-1β and IL-18 simultaneously. However, sJIA, sJIA-MAS and sJIA-LD still pose challenging conundrums to rheumatologists treating paediatric and adult patients worldwide. Although national and international consensus treatment plans exist for the treatment of 'classic' sJIA, the treatment approaches for early sJIA without arthritis, and for refractory or complicated sJIA, are not well defined. Therefore, in this Review we outline current approaches for the treatment of sJIA and provide an outlook on knowledge gaps.
Collapse
Affiliation(s)
- Claas H Hinze
- Department of Paediatric Rheumatology and Immunology, Münster University Hospital, Münster, Germany
| | - Dirk Foell
- Department of Paediatric Rheumatology and Immunology, Münster University Hospital, Münster, Germany.
| | - Christoph Kessel
- Department of Paediatric Rheumatology and Immunology, Münster University Hospital, Münster, Germany
| |
Collapse
|
19
|
Huang Z, Brodeur KE, Chen L, Du, Wobma H, Hsu EE, Liu M, Chang JC, Chang MH, Chou J, Day-Lewis M, Dedeoglu F, Halyabar O, Lederer JA, Li T, Lo MS, Lu M, Meidan E, Newburger JW, Randolph AG, Son MB, Sundel RP, Taylor ML, Wu H, Zhou Q, Canna SW, Wei K, Henderson LA, Nigrovic PA, Lee PY. Type I interferon signature and cycling lymphocytes in macrophage activation syndrome. J Clin Invest 2023; 133:e165616. [PMID: 37751296 PMCID: PMC10645381 DOI: 10.1172/jci165616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.
Collapse
Affiliation(s)
- Zhengping Huang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Kailey E. Brodeur
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Liang Chen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Du
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan E. Hsu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meng Liu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Joyce C. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James A. Lederer
- Center for Data Sciences, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tianwang Li
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Southern Medical University, Guangzhou, China
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meiping Lu
- Department of Rheumatology, Immunology and Allergy, Zhejiang University School of Medicine, Hangzhou, China
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Beth Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria L. Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Scott W. Canna
- Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Schulert GS, Kessel C. Molecular Pathways in the Pathogenesis of Systemic Juvenile Idiopathic Arthritis. Rheum Dis Clin North Am 2023; 49:895-911. [PMID: 37821202 DOI: 10.1016/j.rdc.2023.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a rare childhood chronic inflammatory disorder with risk for life-threatening complications including macrophage activation syndrome and lung disease. At onset, sJIA pathogenesis resembles that of the autoinflammatory periodic fever syndromes with marked innate immune activation, expansion of neutrophils and monocytes, and high levels of interleukin-18. Here, we review the current conceptual understanding of sJIA pathogenesis with a focus on both innate and adaptive immune pathways. Finally, we consider how recent progress toward understanding the immunologic basis of sJIA may support new therapies for refractory disease courses.
Collapse
Affiliation(s)
- Grant S Schulert
- Division of Rheumatology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 4010, Cincinnati, OH 45229, USA.
| | - Christoph Kessel
- Department of Pediatric Rheumatology and Immunology, Translational Inflammation Research, University Children's Hospital, Muenster, Germany
| |
Collapse
|
21
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
22
|
Ashari KA, Hausmann JS, Dedeoglu F. Update on autoinflammatory diseases. Curr Opin Rheumatol 2023:00002281-990000000-00061. [PMID: 37433216 DOI: 10.1097/bor.0000000000000953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Although the concept of systemic autoinflammatory diseases (SAIDs) is still very young, our knowledge about them is exponentially growing. In the current review, we aim to discuss novel SAIDs and autoinflammatory pathways discovered in the last couple of years. RECENT FINDINGS Advances in immunology and genetics have led to the discovery of new pathways involved in autoinflammation, as well as several new SAIDs, including retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache (ROSAH syndrome), vacuoles, E1 enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome, TBK1 deficiency, NEMO deleted exon 5 autoinflammatory syndrome (NDAS), and disabling pansclerotic morphea. Progress in immunobiology and genetics has also brought forth novel treatments for SAIDs. Personalized medicine has made significant progress in areas such as cytokine-targeted therapies and gene therapies. However, much work remains, especially in measuring and improving the quality of life in patients with SAIDs. SUMMARY In the current review, we discuss the novelties in the world of SAIDs, including mechanistic pathways of autoinflammation, pathogenesis, and treatment. We hope this review helps rheumatologists to gain an updated understanding of SAIDs.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence
- Department of Pediatrics, Tehran University of Medical Sciences
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jonathan S Hausmann
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
- Division of Rheumatology, Dermatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
| |
Collapse
|
23
|
Lee PY, Cron RQ. The Multifaceted Immunology of Cytokine Storm Syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1015-1024. [PMID: 37011407 PMCID: PMC10071410 DOI: 10.4049/jimmunol.2200808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 04/05/2023]
Abstract
Cytokine storm syndromes (CSSs) are potentially fatal hyperinflammatory states that share the underpinnings of persistent immune cell activation and uninhibited cytokine production. CSSs can be genetically determined by inborn errors of immunity (i.e., familial hemophagocytic lymphohistiocytosis) or develop as a complication of infections, chronic inflammatory diseases (e.g., Still disease), or malignancies (e.g., T cell lymphoma). Therapeutic interventions that activate the immune system such as chimeric Ag receptor T cell therapy and immune checkpoint inhibition can also trigger CSSs in the setting of cancer treatment. In this review, the biology of different types of CSSs is explored, and the current knowledge on the involvement of immune pathways and the contribution of host genetics is discussed. The use of animal models to study CSSs is reviewed, and their relevance for human diseases is discussed. Lastly, treatment approaches for CSSs are discussed with a focus on interventions that target immune cells and cytokines.
Collapse
Affiliation(s)
- Pui Y. Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Randy Q. Cron
- Division of Pediatric Rheumatology, Children’s of Alabama, University of Alabama Heersink School of Medicine, Birmingham, AL
- Department of Pediatrics, University of Alabama Heersink School of Medicine, Birmingham, AL
| |
Collapse
|
24
|
Inoue N, Schulert GS. Mouse models of systemic juvenile idiopathic arthritis and macrophage activation syndrome. Arthritis Res Ther 2023; 25:48. [PMID: 36964620 PMCID: PMC10039518 DOI: 10.1186/s13075-023-03032-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 03/26/2023] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of pediatric rheumatic diseases, occurring most commonly in children with systemic juvenile idiopathic arthritis (SJIA). Despite several classes of currently available treatment options for SJIA, including biologic agents targeting IL-1 or IL-6, there remain severe cases suffering from refractory disease and recurrent MAS. The phenotype of MAS is similar to hemophagocytic lymphohistiocytosis (HLH), but the underlying pathophysiology of MAS complicating SJIA or other disorders has not been fully clarified. These facts make it challenging to develop and utilize animal models to study MAS. To date, there is no "perfect" model replicating MAS, but several models do demonstrate aspects of SJIA and/or MAS. In this review, we examine the proposed animal models of SJIA and MAS, focusing on how they reflect these disorders, what we have learned from the models, and potential future research questions. As we better understand the key features of each, animal models can be powerful tools to further define the pathophysiology of SJIA and MAS, and develop new treatment targets and strategies.
Collapse
Affiliation(s)
- Natsumi Inoue
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, MLC 4010, USA.
| |
Collapse
|
25
|
mTORC1 implicated in Still's disease and MAS. Nat Rev Rheumatol 2023; 19:64. [PMID: 36609688 DOI: 10.1038/s41584-023-00908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|