1
|
Ai X, Deng H, Li X, Wei Z, Chen Y, Yin T, Zhang J, Huang J, Li H, Lin X, Tan L, Chen D, Zhang X, Zhang X, Meignin C, Imler JL, Cai H. cGAS-like receptors drive a systemic STING-dependent host response in Drosophila. Cell Rep 2024; 43:115081. [PMID: 39688951 DOI: 10.1016/j.celrep.2024.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
cGAS-like receptor (cGLR)-stimulator of interferon genes (STING) recently emerged as an important pathway controlling viral infections in invertebrates. However, its exact contribution at the organismal level remains uncharacterized. Here, we use STING::GFP knockin reporter Drosophila flies to document activation of the pathway in vivo. Four tissues strongly respond to injection of the cyclic dinucleotide 3'2'- cyclic guanosine monophosphate-adenosine monophosphate (cGAMP): the central nervous system, midgut, Malpighian tubules, and genital ducts. The pattern of STING::GFP induction in flies injected with 3'2'-cGAMP or infected by two viruses with different tropism suggests that the reporter is induced by a systemic signal produced in virus-infected cells. Accordingly, ectopic expression of cGLR2 in the fat body induces STING signaling in remote tissues and a cGLR1/2-dependent activity is transferred to females during mating. Furthermore, viral infection can alter sleep in a cGLR1/2- and STING-dependent manner. Altogether, our results reveal a contribution of cyclic dinucleotide signaling to a systemic host response to viral infection in Drosophila.
Collapse
Affiliation(s)
- Xianlong Ai
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Huimin Deng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Li
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ziming Wei
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Yuqiang Chen
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Ting Yin
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Junhui Zhang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jingxian Huang
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Haoming Li
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Lin
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Di Chen
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaohan Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiuqing Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| | - Hua Cai
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Sun Y, Chen C, Zeng C, Xia Q, Yuan C, Pei H. Severe fever with thrombocytopenia syndrome virus infection shapes gut microbiome of the tick vector Haemaphysalis longicornis. Parasit Vectors 2024; 17:107. [PMID: 38444018 PMCID: PMC10913621 DOI: 10.1186/s13071-024-06204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Ticks serve as vectors for a diverse array of pathogens, including viruses responsible for both human and livestock diseases. Symbiotic bacteria hold significant potential for controlling tick-borne disease. However, the alteration of tick gut bacterial community in response to pathogen infection has not been analyzed for any tick-borne viruses. Here, the impact of severe fever with thrombocytopenia syndrome virus (SFTSV) infection on bacterial diversity in the gut of Haemaphysalis longicornis is investigated. METHODS Unfed tick females were artificially infected with SFTSV. The gut samples were collected and the genomic DNA was extracted. We then investigated alterations in gut bacterial composition in response to SFTSV infection through 16S rRNA gene sequencing. RESULTS The study found that a reduction in the number of operational taxonomic units (OTUs) in the tick gut following SFTSV infection. However, there were no significant changes in alpha diversity indices upon infection. Four genera, including Corynebacterium, Arthrobacter, Sphingomonas, and Escherichia, were identified as biomarkers for the tick gut without SFTSV infection. Notably, the predicted correlation network indicated that the biomarkers Sphingomonas and Escherichia exhibited positive correlations within the same subcommunity, which was altered upon viral infection. CONCLUSIONS These findings revealed that the change in tick gut bacterial composition upon SFTSV infection and could facilitate the discovery new target for tick-borne viral disease control.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International School of Public Health and One Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Chen Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Chenghong Zeng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, International School of Public Health and One Health, Hainan Medical University, Haikou, 571199, Hainan, China.
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Chuanfei Yuan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Hua Pei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| |
Collapse
|
3
|
Amalfi S, Plastine MDP, López MG, Gravisaco MJ, Taboga O, Alfonso V. P26 enhances baculovirus gene delivery by modulating the mammalian antiviral response. Appl Microbiol Biotechnol 2023; 107:6277-6286. [PMID: 37578557 DOI: 10.1007/s00253-023-12703-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
Poxins are poxviral proteins that act by degrading 2´3´-cGAMP, a key molecule of cGAS-STING axis that drives and amplifies the antiviral response. Previous works have described some poxin homologous among lepidopteran and baculoviral genes. In particular, P26, a poxin homologous from AcMNPV retains the 2´3´-cGAMP degradation activity in vitro. In this work, we demonstrated that the antiviral activity triggered by baculovirus was disrupted by the transient expression of P26 in murine and human cell lines, and the effect of this action is not only on IFN-β production but also on the induction of IFN-λ. Besides, we proved P26 functionality in a stable-transformed cell line where the protein was constitutively expressed, preventing the production of IFN-β induced by baculovirus and resulting in an improvement in the transduction efficiency by the attenuation of the antiviral activity. Finally, we incorporated P26 into budded virions by capsid display or passive incorporation, and the results showed that both strategies resulted in an improvement of 3-17 times in the efficiency of transgene expression in murine fibroblasts. Our results suggest that the incorporation of P26 to budded baculoviral vectors is a very promising tool to modulate negatively the innate antiviral cellular response and to improve the efficiency of gene delivery in mammalian cells. KEY POINTS: • P26 affects baculovirus-induced IFN-β and IFN-λ production in mammalian cells. • Murine fibroblasts expressing P26 are more susceptible to transduction by baculovirus. • Incorporation of P26 into the virion improves gene delivery efficiency of baculovirus.
Collapse
Affiliation(s)
- Sabrina Amalfi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Av. Vergara 2222, Villa Tesei, B1688GEZ, Hurlingham, Buenos Aires, Argentina
| | - María Del Pilar Plastine
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - María Gabriela López
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - María José Gravisaco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina.
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, B1686IGC, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|