1
|
Gao Y, Zhang Y, Hakke S, Mohren R, Sijbers LJPM, Peters PJ, Ravelli RBG. Cryo-EM structure of cytochrome bo 3 quinol oxidase assembled in peptidiscs reveals an "open" conformation for potential ubiquinone-8 release. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149045. [PMID: 38614453 DOI: 10.1016/j.bbabio.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
Cytochrome bo3 quinol oxidase belongs to the heme‑copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.
Collapse
Affiliation(s)
- Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
| | - Yue Zhang
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Sneha Hakke
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Ronny Mohren
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Lyanne J P M Sijbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands; Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Mensah E, Fourie PB, Peters RPH. Antimicrobial effects of Medicines for Malaria Venture Pathogen Box compounds on strains of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2023; 67:e0034823. [PMID: 37791750 PMCID: PMC10648949 DOI: 10.1128/aac.00348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023] Open
Abstract
Therapeutic options for Neisseria gonorrhoeae are limited due to emerging global resistance. New agents and treatment options to treat patients with susceptible and multi-extensively drug-resistant N. gonorrhoeae is a high priority. This study used an in vitro approach to explore the antimicrobial potential, as well as synergistic effects of Medicine for Malaria Venture (MMV) Pathogen Box compounds against ATCC and clinical N. gonorrhoeae strains. Microbroth dilution assay was used to determine pathogen-specific minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Pathogen Box compounds against susceptible and resistant N. gonorrhoeae strains, with modification, by adding PrestoBlue HS Cell Viability Reagent. A checkerboard assay was used to determine synergy between the active compounds and in conjunction with ceftriaxone. Time-kill kinetics was performed to determine if the compounds were either bactericidal or bacteriostatic. The Pathogen Box compounds: MMV676501, MMV002817, MMV688327, MMV688508, MMV024937, MMV687798 (levofloxacin), MMV021013, and MMV688978 (auranofin) showed potent activity against resistant strains of N. gonorrhoeae at an MIC and MBC of ≤10 µM. Besides the eight compounds, MMV676388 and MMV272144 were active against susceptible N. gonorrhoeae strains, also at MIC and MBC of ≤10 µM. All the compounds were bactericidal and were either synergistic or additive with fractional inhibitory concentration index ranging between 0.40 and 1.8. The study identified novel Pathogen Box compounds with potent activity against N. gonorrhoeae strains and has the potential to be further investigated as primary or adjunctive therapy to treat gonococcal infections.
Collapse
Affiliation(s)
- Eric Mensah
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
| | - Remco P. H. Peters
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa
- Foundation for Professional Development, Research Unit, East London, South Africa
| |
Collapse
|