1
|
James AM, Farnung L. Structural basis of human CHD1 nucleosome recruitment and pausing. Mol Cell 2025; 85:1938-1951.e6. [PMID: 40334658 DOI: 10.1016/j.molcel.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Chromatin remodelers regulate gene expression and genome maintenance by controlling nucleosome positioning, but the structural basis for their regulated and directional activity remains poorly understood. Here, we present three cryoelectron microscopy (cryo-EM) structures of human chromodomain helicase DNA-binding protein 1 (CHD1) bound to nucleosomes that reveal previously unobserved recruitment and regulatory states. We identify a structural element, termed the "anchor element," that connects the CHD1 ATPase motor to the nucleosome entry-side acidic patch. The anchor element coordinates with other regulatory modules, including the gating element, which undergoes a conformational switch critical for remodeling. Our structures demonstrate how the DNA-binding region of CHD1 binds entry- and exit-side DNA during remodeling to achieve directional sliding. The observed structural elements are conserved across chromatin remodelers, suggesting a unified mechanism for nucleosome recognition and remodeling. Our findings show how chromatin remodelers couple nucleosome recruitment to regulated DNA translocation, providing a framework for understanding chromatin remodeler mechanisms beyond DNA translocation.
Collapse
Affiliation(s)
- Allison M James
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Reid XJ, Zhong Y, Mackay JP. How does CHD4 slide nucleosomes? Biochem Soc Trans 2024; 52:1995-2008. [PMID: 39221830 PMCID: PMC11555702 DOI: 10.1042/bst20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chromatin remodelling enzymes reposition nucleosomes throughout the genome to regulate the rate of transcription and other processes. These enzymes have been studied intensively since the 1990s, and yet the mechanism by which they operate has only very recently come into focus, following advances in cryoelectron microscopy and single-molecule biophysics. CHD4 is an essential and ubiquitous chromatin remodelling enzyme that until recently has received less attention than remodellers such as Snf2 and CHD1. Here we review what recent work in the field has taught us about how CHD4 reshapes the genome. Cryoelectron microscopy and single-molecule studies demonstrate that CHD4 shares a central remodelling mechanism with most other chromatin remodellers. At the same time, differences between CHD4 and other chromatin remodellers result from the actions of auxiliary domains that regulate remodeller activity by for example: (1) making differential interactions with nucleosomal epitopes such as the acidic patch and the N-terminal tail of histone H4, and (2) inducing the formation of distinct multi-protein remodelling complexes (e.g. NuRD vs ChAHP). Thus, although we have learned much about remodeller activity, there is still clearly much more waiting to be revealed.
Collapse
Affiliation(s)
- Xavier J. Reid
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
3
|
Shiraishi T, Katayama Y, Nishiyama M, Shoji H, Miyakawa T, Mizoo T, Matsumoto A, Hijikata A, Shirai T, Mayanagi K, Nakayama KI. The complex etiology of autism spectrum disorder due to missense mutations of CHD8. Mol Psychiatry 2024; 29:2145-2160. [PMID: 38438524 DOI: 10.1038/s41380-024-02491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.
Collapse
Affiliation(s)
- Taichi Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yuta Katayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Atsushi Hijikata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Kouta Mayanagi
- Department of Drug Discovery Structural Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka, 812-8582, Japan.
- Anticancer Strategies Laboratory, TMDU Advanced Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
4
|
Fenton M, Gregory E, Daughdrill G. Protein disorder and autoinhibition: The role of multivalency and effective concentration. Curr Opin Struct Biol 2023; 83:102705. [PMID: 37778184 PMCID: PMC10841074 DOI: 10.1016/j.sbi.2023.102705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Regulation of protein binding through autoinhibition commonly occurs via interactions involving intrinsically disordered regions (IDRs). These intramolecular interactions can directly or allosterically inhibit intermolecular protein or DNA binding, regulate enzymatic activity, and control the assembly of large macromolecular complexes. Autoinhibitory interactions mediated by protein disorder are inherently transient, making their identification and characterization challenging. In this review, we explore the structural and functional diversity of disorder-mediated autoinhibition for a variety of biological mechanisms, with a focus on the role of multivalency and effective concentration. We also discuss the evolution of disordered motifs that participate in autoinhibition using examples where sequence conservation varies from high to low. In some cases, identifiable motifs that are essential for autoinhibition remain intact within a rapidly evolving sequence, over long evolutionary distances. Finally, we examine the potential of AlphaFold2 to predict autoinhibitory intramolecular interactions involving IDRs.
Collapse
Affiliation(s)
- Malissa Fenton
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Emily Gregory
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Gary Daughdrill
- Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
5
|
Sun Z, Cernilogar FM, Horvatic H, Yeroslaviz A, Abdullah Z, Schotta G, Hornung V. β1 integrin signaling governs necroptosis via the chromatin-remodeling factor CHD4. Cell Rep 2023; 42:113322. [PMID: 37883227 DOI: 10.1016/j.celrep.2023.113322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Fibrosis, characterized by sustained activation of myofibroblasts and excessive extracellular matrix (ECM) deposition, is known to be associated with chronic inflammation. Receptor-interacting protein kinase 3 (RIPK3), the central kinase of necroptosis signaling, is upregulated in fibrosis and contributes to tumor necrosis factor (TNF)-mediated inflammation. In bile-duct-ligation-induced liver fibrosis, we found that myofibroblasts are the major cell type expressing RIPK3. Genetic ablation of β1 integrin, the major profibrotic ECM receptor in fibroblasts, not only abolished ECM fibrillogenesis but also blunted RIPK3 expression via a mechanism mediated by the chromatin-remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4). While the function of CHD4 has been conventionally linked to the nucleosome-remodeling deacetylase (NuRD) and CHD4-ADNP-HP1(ChAHP) complexes, we found that CHD4 potently repressed a set of genes, including Ripk3, with high locus specificity but independent of either the NuRD or the ChAHP complex. Thus, our data uncover that β1 integrin intrinsically links fibrotic signaling to RIPK3-driven inflammation via a novel mode of action of CHD4.
Collapse
Affiliation(s)
- Zhiqi Sun
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany; Research Group Molecular Mechanisms of Inflammation, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helena Horvatic
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Assa Yeroslaviz
- Computational Biology Group, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany; Research Group Molecular Mechanisms of Inflammation, Max-Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|