1
|
Zhou G, Zhou Z, Feng D, Fan W, Luo Q, Lu X. Rich analytic toolbox for the exploration, characterization, screening, and application studies of ω-transaminases. Biotechnol Adv 2025; 82:108597. [PMID: 40349807 DOI: 10.1016/j.biotechadv.2025.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Omega-transaminases (ωTAs) constitute an important class of biocatalysts in the pharmaceutical, agrochemical, and fine chemical industries, because of their generally good performance in the efficient, enantiospecific, and environment-friendly synthesis of chiral amines that possess diverse chemical structures and biological activities. However, their practical applications are often hindered by unfavorable reaction equilibria, product inhibition, limited robustness, and relatively small accommodation for substrates. Many efforts, including the exploration of novel enzymes from various environments and the targeted engineering of identified enzymes, have been made to develop more specific and efficient ωTA catalysts. A simple, rapid, and accurate evaluation of enzyme activity is important. In addition to the classic chromatography-based methods, to date, at least 18 analytic methods, which are based on cell growth or colorimetry/spectrophotometry, pH, fluorescence and conductivity changes, have been developed and applied in both qualitative and quantitative analyses of ωTAs. These methods differ in terms of their principles, accuracy, throughput, simplicity, and cost-effectiveness. Here, we present a detailed examination of the advantages and drawbacks of these methods. Guidance for method selection from the perspective of practical applications is proposed to assist investigators in choosing appropriate methods according to different research purposes and existing conditions.
Collapse
Affiliation(s)
- Guan Zhou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Zewei Zhou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; School of Biological Science and Technology, University of Jinan, Nanxinzhuang West Road 336, Ji'nan 250022, China
| | - Dandan Feng
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Wenrui Fan
- National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Quan Luo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Middle Rd 168, Qingdao 266237, China.
| |
Collapse
|
2
|
Lü X, Fan S, Lü R, Zong L, Xia Z, Jin Y, Zhang Z, Yang Z. Deep learning-driven semi-rational design in phenylalanine ammonia-lyase for enhanced catalytic efficiency. Int J Biol Macromol 2025; 305:141024. [PMID: 39984092 DOI: 10.1016/j.ijbiomac.2025.141024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/31/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Phenylalanine ammonia-lyase (PAL) possesses significant potential in agriculture, industry, and the treatment of various diseases, including cancer. In particular, PAL derived from Anabaena variabilis (AvPAL) has been successfully utilized in clinical settings as an enzyme replacement therapy for phenylketonuria (PKU). Nonetheless, enhancing the catalytic efficiency of enzymes continues to be a formidable task. Herein, a deep learning-guided strategy was employed to identify potential sites in AvPAL that require modification to address current challenges. In conjunction with high-throughput screening and enzymatic assays, 26 out of 33 mutants were validated to exhibit enhanced activity. Notably, the probability of identifying mutants with increased activity at each targeted site was 100 %. Through multiple rounds of combinatorial mutagenesis, the catalytic efficiency (kcat/KM) was improved up to 3.4-fold (M222N/N36S) and the activity was enhanced up to 2.4-fold (M222N/I149D) compared to the wild type. Molecular dynamics simulations revealed that the stabilization of the proximate attack conformation is closely associated with the enhancement of catalytic activity. Furthermore, structural superposition, residue interaction network analysis, and dynamic cross-correlation matrices indicate that the most active mutant, M222N/I149D, induces local fluctuations and distal effects in loop 81-94, leading to a more favorable conformation and thus increased activity. Collectively, this study provides a feasible approach for engineering an efficient PAL.
Collapse
Affiliation(s)
- Xudong Lü
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ruijie Lü
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Lixia Zong
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Zhiyong Xia
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China
| | - Yuanyuan Jin
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.
| | - Zhifeng Zhang
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, China.
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Bayer T, Wu S, Snajdrova R, Baldenius K, Bornscheuer UT. An Update: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2025:e202505976. [PMID: 40241335 DOI: 10.1002/anie.202505976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Supported by rapid technological advancements, biocatalytic applications have matured into sustainable, scalable, and cost-competitive alternatives to established chemical catalysis. This review presents the most recent examples of enzyme-based solutions for the manufacturing of molecules with extended carbon-carbon frameworks and multiple stereogenic centers at commercial scale, including peptide building blocks, (rare) sugars, synthetic (oligo)nucleotides, and terpenoids, such as (-)-Ambrox®. Novel enzyme classes are highlighted along with their potential applications-the synthesis of DNA/RNA, the depolymerization of synthetic plastics, or fully enzymatic protection/deprotection schemes-pointing toward the diversification and broader industrial utilization of biocatalysis-based processes.
Collapse
Affiliation(s)
- Thomas Bayer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, Basel, 4056, Switzerland
| | - Kai Baldenius
- Baldenius Biotech Consulting, Hafenstr. 31, 68159, Mannheim, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
4
|
Xiang C, Ce YK, Xue YP, Zheng YG. The pedal-like loop of (R)-selective transaminases plays a critical role to the functionality of the enzyme. Biotechnol Lett 2025; 47:35. [PMID: 40100435 DOI: 10.1007/s10529-025-03577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
In enzyme engineering, a lot of studies have focused on engineering the active site to broaden substrate specificity or enhance transaminase activity; however, relatively little is known about the mechanisms by which substrates are recognized and enter the binding pocket. Transaminases play a crucial role in the synthesis of chiral amines due to their exceptional stereoselectivity and catalytic efficiency. In this study, we explored how the pedal-like loop at the active site influences (R)-transaminase (ATA) activity and substrate recognition by modulating the substrate channel. The pedal-like loop at the active site was swapped with loops from other well-characterized transaminases, and the best-performing variant exhibited a 5.2-fold increase in activity toward (R)-phenylethylamine ((R)-PEA) and an 11.8-fold increase in activity toward isopropylamine (IPA). Additionally, some variants showed significant changes in substrate preference. Homology modeling and molecular docking analysis provided compelling evidence that the pedal-like loop is a critical determinant of both substrate recognition and catalytic activity in (R)-ATA.
Collapse
Affiliation(s)
- Chao Xiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| | - Yu-Ke Ce
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China.
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 310014, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Yang Z, Thompson S, Zhang Y, Rutten I, Van Duyse J, Van Isterdael G, Nichols L, Lammertyn J, Soh HT, Fordyce P. Continuous FACS sorting of double emulsion picoreactors with a 3D printed vertical mixer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643134. [PMID: 40161623 PMCID: PMC11952560 DOI: 10.1101/2025.03.13.643134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
High-throughput screening and directed evolution using microfluidic picoreactors have produced high-activity enzymes. In this approach, a substrate is co-encapsulated with a candidate enzyme and individual picoreactors are sorted based on an activity reporter. While many approaches use water-in-oil droplets (single emulsions) for fluorescence-activated droplet sorting (FADS) on custom-fabricated microfluidic devices that require integrated optics and electronics, recent approaches have lowered the engineering barriers to adoption by using simple microfluidic droplet generators to produce water-in-oil-in-water droplets (double emulsion picoreactors, DEs) that can be sorted with commercial FACS (fluorescence-activated cell sorting). Despite the simplified engineering requirements, high variability in loading rates and low yield during loading are barriers to efficient DE FACS sorting. Here, we optimized surfactants to enhance DE stability and demonstrated that a 3D-printed corkscrew on the sample line acts as a vertical mixer to enable more continuous loading. With these optimized loading conditions, we analyzed 1.17 million DEs in four 10-minute sorting rounds with a mean frequency of 480 Hz (390 Hz including sample exchanges); in a mock sort of 10% fluorescent DEs, we achieved 89.2±1.1% accuracy and 78±0.9% recovery with our optimized loading protocol. Overall, improved ease-of-use and throughput for FACS sortable DEs should expand the accessibility of directed evolution in controlled in vitro environments.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Radiology, Stanford University, Stanford, CA
| | - Samuel Thompson
- Department of Genetics, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
| | - Yanrong Zhang
- Stanford Shared FACS Facility, Stanford University, Stanford, CA
| | - Iene Rutten
- Department of Biosystems - Biosensors group, KU Leuven, Leuven, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Technologies, Ghent, Belgium
- VIB Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Technologies, Ghent, Belgium
- VIB Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lisa Nichols
- Stanford Shared FACS Facility, Stanford University, Stanford, CA
- Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA
| | - Jeroen Lammertyn
- Department of Biosystems - Biosensors group, KU Leuven, Leuven, Belgium
| | - Hyongsok T Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA
| | - Polly Fordyce
- Department of Genetics, Stanford University, Stanford, CA
- Department of Bioengineering, Stanford University, Stanford, CA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
6
|
Logotheti M, Gehres S, França AS, Bornscheuer UT, de Souza ROMA, Höhne M. Combining Photochemical Oxyfunctionalization and Enzymatic Catalysis for the Synthesis of Chiral Pyrrolidines and Azepanes. J Org Chem 2025; 90:1036-1043. [PMID: 39772597 PMCID: PMC11744798 DOI: 10.1021/acs.joc.4c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025]
Abstract
Chiral heterocyclic alcohols and amines are frequently used building blocks in the synthesis of fine chemicals and pharmaceuticals. Herein, we report a one-pot photoenzymatic synthesis route for N-Boc-3-amino/hydroxy-pyrrolidine and N-Boc-4-amino/hydroxy-azepane with up to 90% conversions and >99% enantiomeric excess. The transformation combines a photochemical oxyfunctionalization favored for distal C-H positions with a stereoselective enzymatic transamination or carbonyl reduction step. Our study demonstrates a mild and operationally simple asymmetric synthesis workflow from easily available starting materials.
Collapse
Affiliation(s)
- Maria Logotheti
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Susanne Gehres
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Alexandre S. França
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Uwe T. Bornscheuer
- Department
of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str., 4, 17487 Greifswald, Germany
| | - Rodrigo O. M. A. de Souza
- Biocatalysis
and Organic Synthesis Group, Federal University
of Rio de Janeiro, Chemistry Institute, 21941909 Rio de Janeiro, Brazil
| | - Matthias Höhne
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
7
|
Sun C, Lu G, Chen B, Li G, Wu Y, Brack Y, Yi D, Ao YF, Wu S, Wei R, Sun Y, Zhai G, Bornscheuer UT. Direct asymmetric synthesis of β-branched aromatic α-amino acids using engineered phenylalanine ammonia lyases. Nat Commun 2024; 15:8264. [PMID: 39327443 PMCID: PMC11427684 DOI: 10.1038/s41467-024-52613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
β-Branched aromatic α-amino acids are valuable building blocks in natural products and pharmaceutically active compounds. However, their chemical or enzymatic synthesis is challenging due to the presence of two stereocenters. We design phenylalanine ammonia lyases (PAL) variants for the direct asymmetric synthesis of β-branched aromatic α-amino acids. Based on extensive computational analyses, we unravel the enigma behind PAL's inability to accept β-methyl cinnamic acid (β-MeCA) as substrate and achieve the synthesis of the corresponding amino acids of β-MeCA and analogs using a double (PcPAL-L256V-I460V) and a triple mutant (PcPAL-F137V-L256V-I460V). The reactions are scaled-up using an optimized E. coli based whole-cell biotransformation system to produce ten β-branched phenylalanine analogs with high diastereoselectivity (dr > 20:1) and enantioselectivity (ee > 99.5%) in yields ranging from 41-71%. Moreover, we decipher the mechanism of PcPAL-L256V-I460V for the acceptance of β-MeCA and converting it with excellent stereoselectivity by computational simulations. Thus, this study offers an efficient method for synthesizing β-branched aromatic α-amino acids.
Collapse
Affiliation(s)
- Chenghai Sun
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Gen Lu
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, China
| | - Baoming Chen
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, China
| | - Guangjun Li
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, China
| | - Ya Wu
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, China
| | - Yannik Brack
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dong Yi
- Research Center for Systems Biosynthesis, China State Institute of Pharmaceutical Industry, National Key Laboratory of Lead Druggability Research, Shanghai, China
| | - Yu-Fei Ao
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Shuke Wu
- College of Life Science and Technology, Huazhong Agriculture University, Wuhan, China
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Yuhui Sun
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, China
| | - Guifa Zhai
- School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Wuhan, China.
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
8
|
Li F, Scheller S, Lienemann M. A growth-based screening strategy for engineering the catalytic activity of an oxygen-sensitive formate dehydrogenase. Appl Environ Microbiol 2024; 90:e0147224. [PMID: 39194220 PMCID: PMC11409667 DOI: 10.1128/aem.01472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Enzyme engineering is a powerful tool for improving or altering the properties of biocatalysts for industrial, research, and therapeutic applications. Fast and accurate screening of variant libraries is often the bottleneck of enzyme engineering and may be overcome by growth-based screening strategies with simple processes to enable high throughput. The currently available growth-based screening strategies have been widely employed for enzymes but not yet for catalytically potent and oxygen-sensitive metalloenzymes. Here, we present a screening system that couples the activity of an oxygen-sensitive formate dehydrogenase to the growth of Escherichia coli. This system relies on the complementation of the E. coli formate hydrogenlyase (FHL) complex by Mo-dependent formate dehydrogenase H (EcFDH-H). Using an EcFDH-H-deficient strain, we demonstrate that growth inhibition by acidic glucose fermentation products can be alleviated by FHL complementation. This allows the identification of catalytically active EcFDH-H variants at a readily measurable cell density readout, reduced handling efforts, and a low risk of oxygen contamination. Furthermore, a good correlation between cell density and formate oxidation activity was established using EcFDH-H variants with variable catalytic activities. As proof of concept, the growth assay was employed to screen a library of 1,032 EcFDH-H variants and reduced the library size to 96 clones. During the subsequent colorimetric screening of these clones, the variant A12G exhibiting an 82.4% enhanced formate oxidation rate was identified. Since many metal-dependent formate dehydrogenases and hydrogenases form functional complexes resembling E. coli FHL, the demonstrated growth-based screening strategy may be adapted to components of such electron-transferring complexes.IMPORTANCEOxygen-sensitive metalloenzymes are highly potent catalysts that allow the reduction of chemically inert substrates such as CO2 and N2 at ambient pressure and temperature and have, therefore, been considered for the sustainable production of biofuels and commodity chemicals such as ammonia, formic acid, and glycine. A proven method to optimize natural enzymes for such applications is enzyme engineering using high-throughput variant library screening. However, most screening methods are incompatible with the oxygen sensitivity of these metalloenzymes and thereby limit their relevance for the development of biosynthetic production processes. A microtiter plate-based assay was developed for the screening of metal-dependent formate dehydrogenase that links the activity of the tested enzyme variant to the growth of the anaerobically grown host cell. The presented work extends the application range of growth-based screening to metalloenzymes and is thereby expected to advance their adoption to biosynthesis applications.
Collapse
Affiliation(s)
- Feilong Li
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | |
Collapse
|
9
|
Cheng F, Sun KX, Gong XX, Peng W, Zhang HY, Liang XH, Xue YP, Zheng YG. Development of growth selection system and pocket engineering of d-amino acid oxidase to enhance selective deamination activity toward d-phosphinothricin. Biotechnol Bioeng 2024; 121:2893-2906. [PMID: 38822747 DOI: 10.1002/bit.28763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.
Collapse
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ke-Xiang Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Xiao Gong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Wei Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Hua-Yue Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Xi-Hang Liang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Chen A, Zhang XD, Đelmaš AĐ, Weitz DA, Milcic K. Systems and Methods for Continuous Evolution of Enzymes. Chemistry 2024; 30:e202400880. [PMID: 38780896 DOI: 10.1002/chem.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Directed evolution generates novel biomolecules with desired functions by iteratively diversifying the genetic sequence of wildtype biomolecules, relaying the genetic information to the molecule with function, and selecting the variants that progresses towards the properties of interest. While traditional directed evolution consumes significant labor and time for each step, continuous evolution seeks to automate all steps so directed evolution can proceed with minimum human intervention and dramatically shortened time. A major application of continuous evolution is the generation of novel enzymes, which catalyze reactions under conditions that are not favorable to their wildtype counterparts, or on altered substrates. The challenge to continuously evolve enzymes lies in automating sufficient, unbiased gene diversification, providing selection for a wide array of reaction types, and linking the genetic information to the phenotypic function. Over years of development, continuous evolution has accumulated versatile strategies to address these challenges, enabling its use as a general tool for enzyme engineering. As the capability of continuous evolution continues to expand, its impact will increase across various industries. In this review, we summarize the working mechanisms of recently developed continuous evolution strategies, discuss examples of their applications focusing on enzyme evolution, and point out their limitations and future directions.
Collapse
Affiliation(s)
- Anqi Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
| | - Xinge Diana Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
| | | | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Karla Milcic
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, 02138, USA E-mail: Dr David A. Weitz: E-mail: Dr. Karla Milcic
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
11
|
Qiu S, Ju CL, Wang T, Chen J, Cui YT, Wang LQ, Fan FF, Huang J. Evolving ω-amine transaminase AtATA guided by substrate-enzyme binding free energy for enhancing activity and stability against non-natural substrates. Appl Environ Microbiol 2024; 90:e0054324. [PMID: 38864627 PMCID: PMC11267935 DOI: 10.1128/aem.00543-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
In the field of chiral amine synthesis, ω-amine transaminase (ω-ATA) is one of the most established enzymes capable of asymmetric amination under optimal conditions. However, the applicability of ω-ATA toward more non-natural complex molecules remains limited due to its low transamination activity, thermostability, and narrow substrate scope. Here, by employing a combined approach of computational virtual screening strategy and combinatorial active-site saturation test/iterative saturation mutagenesis strategy, we have constructed the best variant M14C3-V5 (M14C3-V62A-V116S-E117I-L118I-V147F) with improved ω-ATA from Aspergillus terreus (AtATA) activity and thermostability toward non-natural substrate 1-acetylnaphthalene, which is the ketone precursor for producing the intermediate (R)-(+)-1-(1-naphthyl)ethylamine [(R)-NEA] of cinacalcet hydrochloride, showing activity enhancement of up to 3.4-fold compared to parent enzyme M14C3 (AtATA-F115L-M150C-H210N-M280C-V149A-L182F-L187F). The computational tools YASARA, Discovery Studio, Amber, and FoldX were applied for predicting mutation hotspots based on substrate-enzyme binding free energies and to show the possible mechanism with features related to AtATA structure, catalytic activity, and stability in silico analyses. M14C3-V5 achieved 71.8% conversion toward 50 mM 1-acetylnaphthalene in a 50 mL preparative-scale reaction for preparing (R)-NEA. Moreover, M14C3-V5 expanded the substrate scope toward aromatic ketone compounds. The generated virtual screening strategy based on the changes in binding free energies has successfully predicted the AtATA activity toward 1-acetylnaphthalene and related substrates. Together with experimental data, these approaches can serve as a gateway to explore desirable performances, expand enzyme-substrate scope, and accelerate biocatalysis.IMPORTANCEChiral amine is a crucial compound with many valuable applications. Their asymmetric synthesis employing ω-amine transaminases (ω-ATAs) is considered an attractive method. However, most ω-ATAs exhibit low activity and stability toward various non-natural substrates, which limits their industrial application. In this work, protein engineering strategy and computer-aided design are performed to evolve the activity and stability of ω-ATA from Aspergillus terreus toward non-natural substrates. After five rounds of mutations, the best variant, M14C3-V5, is obtained, showing better catalytic efficiency toward 1-acetylnaphthalene and higher thermostability than the original enzyme, M14C3. The robust combinational variant acquired displayed significant application value for pushing the asymmetric synthesis of aromatic chiral amines to a higher level.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong-Lin Ju
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tong Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jie Chen
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yu-Tong Cui
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lin-Quan Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fang-Fang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
12
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
13
|
Branson Y, Schnell B, Zurr C, Bayer T, Badenhorst CPS, Wei R, Bornscheuer UT. An Extremely Sensitive Ultra-High Throughput Growth Selection Assay for the Identification of Amidase Activity. Appl Microbiol Biotechnol 2024; 108:392. [PMID: 38910173 PMCID: PMC11194204 DOI: 10.1007/s00253-024-13233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
In the last decades, biocatalysis has offered new perspectives for the synthesis of (chiral) amines, which are essential building blocks for pharmaceuticals, fine and bulk chemicals. In this regard, amidases have been employed due to their broad substrate scope and their independence from expensive cofactors. To expand the repertoire of amidases, tools for their rapid identification and characterization are greatly demanded. In this work an ultra-high throughput growth selection assay based on the production of the folate precursor p-aminobenzoic acid (PABA) is introduced to identify amidase activity. PABA-derived amides structurally mimic the broad class of commonly used chromogenic substrates derived from p-nitroaniline. This suggests that the assay should be broadly applicable for the identification of amidases. Unlike conventional growth selection assays that rely on substrates as nitrogen or carbon source, our approach requires PABA in sub-nanomolar concentrations, making it exceptionally sensitive and ideal for engineering campaigns that aim at enhancing amidase activities from minimally active starting points, for example. The presented assay offers flexibility in the adjustment of sensitivity to suit project-specific needs using different expression systems and fine-tuning with the antimetabolite sulfathiazole. Application of this PABA-based assay facilitates the screening of millions of enzyme variants on a single agar plate within two days, without the need for laborious sample preparation or expensive instruments, with transformation efficiency being the only limiting factor. KEY POINTS: • Ultra-high throughput assay (tens of millions on one agar plate) for amidase screening • High sensitivity by coupling selection to folate instead of carbon or nitrogen source • Highly adjustable in terms of sensitivity and expression of the engineering target.
Collapse
Affiliation(s)
- Yannick Branson
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Bjarne Schnell
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Celine Zurr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Christoffel P S Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, 17487, Greifswald, Germany.
| |
Collapse
|
14
|
Bidart GN, Hyeuk S, Alter TB, Yang L, Welner DH. A growth selection system for sucrose synthases (SuSy): design and test. AMB Express 2024; 14:70. [PMID: 38865019 PMCID: PMC11169191 DOI: 10.1186/s13568-024-01727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
High throughput screening (HTS) methods of enzyme variants are essential for the development of robust biocatalysts suited for low impact, industrial scale, biobased synthesis of a myriad of compounds. However, for the majority of enzyme classes, current screening methods have limited throughput, or need expensive substrates in combination with sophisticated setups. Here, we present a straightforward, high throughput selection system that couples sucrose synthase activity to growth. Enabling high throughput screening of this enzyme class holds the potential to facilitate the creation of robust variants, which in turn can significantly impact the future of cost effective industrial glycosylation.
Collapse
Affiliation(s)
- Gonzalo N Bidart
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Se Hyeuk
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Tobias Benedikt Alter
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
| | - Lei Yang
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby, DK-2800, Denmark.
| |
Collapse
|
15
|
Zhou SP, Xue YP, Zheng YG. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications. Biotechnol Adv 2024; 72:108352. [PMID: 38574900 DOI: 10.1016/j.biotechadv.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
16
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
17
|
Jansen S, Mayer C. A Robust Growth-Based Selection Platform to Evolve an Enzyme via Dependency on Noncanonical Tyrosine Analogues. JACS AU 2024; 4:1583-1590. [PMID: 38665651 PMCID: PMC11040555 DOI: 10.1021/jacsau.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024]
Abstract
Growth-based selections evaluate the fitness of individual organisms at a population level. In enzyme engineering, such growth selections allow for the rapid and straightforward identification of highly efficient biocatalysts from extensive libraries. However, selection-based improvement of (synthetically useful) biocatalysts is challenging, as they require highly dependable strategies that artificially link their activities to host survival. Here, we showcase a robust and scalable growth-based selection platform centered around the complementation of noncanonical amino acid-dependent bacteria. Specifically, we demonstrate how serial passaging of populations featuring millions of carbamoylase variants autonomously selects biocatalysts with up to 90,000-fold higher initial rates. Notably, selection of replicate populations enriched diverse biocatalysts, which feature distinct amino acid motifs that drastically boost carbamoylase activity. As beneficial substitutions also originated from unintended copying errors during library preparation or cell division, we anticipate that our growth-based selection platform will be applicable to the continuous, autonomous evolution of diverse biocatalysts in the future.
Collapse
Affiliation(s)
- Suzanne
C. Jansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
18
|
Farkas E, Sátorhelyi P, Szakács Z, Dékány M, Vaskó D, Hornyánszky G, Poppe L, Éles J. Transaminase-catalysis to produce trans-4-substituted cyclohexane-1-amines including a key intermediate towards cariprazine. Commun Chem 2024; 7:86. [PMID: 38637664 PMCID: PMC11026398 DOI: 10.1038/s42004-024-01148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
Cariprazine-the only single antipsychotic drug in the market which can handle all symptoms of bipolar I disorder-involves trans-4-substituted cyclohexane-1-amine as a key structural element. In this work, production of trans-4-substituted cyclohexane-1-amines was investigated applying transaminases either in diastereotope selective amination starting from the corresponding ketone or in diastereomer selective deamination of their diasteromeric mixtures. Transaminases were identified enabling the conversion of the cis-diastereomer of four selected cis/trans-amines with different 4-substituents to the corresponding ketones. In the continuous-flow experiments aiming the cis diastereomer conversion to ketone, highly diastereopure trans-amine could be produced (de > 99%). The yield of pure trans-isomers exceeding their original amount in the starting mixture could be explained by dynamic isomerization through ketone intermediates. The single transaminase-catalyzed process-exploiting the cis-diastereomer selectivity of the deamination and thermodynamic control favoring the trans-amines due to reversibility of the steps-allows enhancement of the productivity of industrial cariprazine synthesis.
Collapse
Affiliation(s)
- Emese Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| | - Péter Sátorhelyi
- Fermentia Microbiological Ltd., Berlini út 47-49, 1405, Budapest, Hungary
| | | | - Miklós Dékány
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary
| | - Dorottya Vaskó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
- Biocatalysis and Biotransformation Research Centre, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University of Cluj-Napoca, Arany János str. 11., 400028, Cluj-Napoca, Romania.
| | - János Éles
- Gedeon Richter Plc., PO Box 27, 1475, Budapest, Hungary.
| |
Collapse
|
19
|
Li C, Gao X, Li H, Wang T, Lu F, Qin H. Growth-Coupled Evolutionary Pressure Improving Epimerases for D-Allulose Biosynthesis Using a Biosensor-Assisted In Vivo Selection Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306478. [PMID: 38308132 PMCID: PMC11005681 DOI: 10.1002/advs.202306478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Indexed: 02/04/2024]
Abstract
Fast screening strategies that enable high-throughput evaluation and identification of desired variants from diversified enzyme libraries are crucial to tailoring biocatalysts for the synthesis of D-allulose, which is currently limited by the poor catalytic performance of ketose 3-epimerases (KEases). Here, the study designs a minimally equipment-dependent, high-throughput, and growth-coupled in vivo screening platform founded on a redesigned D-allulose-dependent biosensor system. The genetic elements modulating regulator PsiR expression levels undergo systematic optimization to improve the growth-responsive dynamic range of the biosensor, which presents ≈30-fold facilitated growth optical density with a high signal-to-noise ratio (1.52 to 0.05) toward D-allulose concentrations from 0 to 100 mm. Structural analysis and evolutionary conservation analysis of Agrobacterium sp. SUL3 D-allulose 3-epimerase (ADAE) reveal a highly conserved catalytic active site and variable hydrophobic pocket, which together regulate substrate recognition. Structure-guided rational design and directed evolution are implemented using the growth-coupled in vivo screening platform to reprogram ADAE, in which a mutant M42 (P38N/V102A/Y201L/S207N/I251R) is identified with a 6.28-fold enhancement of catalytic activity and significantly improved thermostability with a 2.5-fold increase of the half-life at 60 °C. The research demonstrates that biosensor-assisted growth-coupled evolutionary pressure combined with structure-guided rational design provides a universal route for engineering KEases.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Huimin Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Tong Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| | - Hui‐Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of EducationTianjin Key Laboratory of Industrial MicrobiologyNational Engineering Laboratory for Industrial EnzymesCollege of BiotechnologyTianjin University of Science and TechnologyTianjin300457P. R. China
| |
Collapse
|
20
|
Fan S, Wei X, Lü R, Feng C, Zhang Q, Lü X, Jin Y, Yan M, Yang Z. Roles of the N-terminal motif in improving the activity and soluble expression of phenylalanine ammonia lyases in Escherichia coli. Int J Biol Macromol 2024; 262:130248. [PMID: 38367782 DOI: 10.1016/j.ijbiomac.2024.130248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Phenylalanine ammonia-lyase (PAL) has various applications in fine chemical manufacturing and the pharmaceutical industry. In particular, PAL derived from Anabaena variabilis (AvPAL) is used as a therapeutic agent to the treat phenylketonuria in clinical settings. In this study, we aligned the amino acid sequences of AvPAL and PAL derived from Nostoc punctiforme (NpPAL) to obtain several mutants with enhanced activity, expression yield, and thermal stability via amino acid substitution and saturation mutagenesis at the N-terminal position. Enzyme kinetic experiments revealed that the kcat values of NpPAL-N2K, NpPAL-I3T, and NpPAL-T4L mutants were increased to 3.2-, 2.8-, and 3.3-fold that of the wild-type, respectively. Saturation mutagenesis of the fourth amino acid in AvPAL revealed that the kcat values of AvPAL-L4N, AvPAL-L4P, AvPAL-L4Q and AvPAL-L4S increased to 4.0-, 3.7-, 3.6-, and 3.2-fold, respectively. Additionally, the soluble protein yield of AvPAL-L4K increased to approximately 14 mg/L, which is approximately 3.5-fold that of AvPAL. Molecular dynamics studies further revealed that maintaining the attacking state of the reaction and N-terminal structure increased the rate of catalytic reaction and improved the solubility of proteins. These findings provide new insights for the rational design of PAL in the future.
Collapse
Affiliation(s)
- Shuai Fan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiyu Wei
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ruijie Lü
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Cuiyue Feng
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Qian Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xudong Lü
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Jin
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, Shandong, China.
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
21
|
Hendricks AR, Cohen RS, McEwen GA, Tien T, Guilliams BF, Alspach A, Snow CD, Ackerson CJ. Laboratory Evolution of Metalloid Reductase Substrate Recognition and Nanoparticle Product Size. ACS Chem Biol 2024; 19:289-299. [PMID: 38295274 DOI: 10.1021/acschembio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Glutathione reductase-like metalloid reductase (GRLMR) is an enzyme that reduces selenodiglutathione (GS-Se-SG), forming zerovalent Se nanoparticles (SeNPs). Error-prone polymerase chain reaction was used to create a library of ∼10,000 GRLMR variants. The library was expressed in BL21Escherichia coli in liquid culture with 50 mM of SeO32- present, under the hypothesis that the enzyme variants with improved GS-Se-SG reduction kinetics would emerge. The selection resulted in a GRLMR variant with two mutations. One of the mutations (D-E) lacks an obvious functional role, whereas the other mutation is L-H within 5 Å of the enzyme active site. This mutation places a second H residue within 5 Å of an active site dicysteine. This GRLMR variant was characterized for NADPH-dependent reduction of GS-Se-SG, GSSG, SeO32-, SeO42-, GS-Te-SG, and TeO32-. The evolved enzyme demonstrated enhanced reduction of SeO32- and gained the ability to reduce SeO42-. This variant is named selenium reductase (SeR) because of its emergent broad activity for a wide variety of Se substrates, whereas the parent enzyme was specific for GS-Se-SG. This study overall suggests that new biosynthetic routes are possible for inorganic nanomaterials using laboratory-directed evolution methods.
Collapse
Affiliation(s)
- Alexander R Hendricks
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Rachel S Cohen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gavin A McEwen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tony Tien
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bradley F Guilliams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Audrey Alspach
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher D Snow
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher J Ackerson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
22
|
Du H, Liang Y, Li J, Yuan X, Tao F, Dong C, Shen Z, Sui G, Wang P. Directed Evolution of 4-Hydroxyphenylpyruvate Biosensors Based on a Dual Selection System. Int J Mol Sci 2024; 25:1533. [PMID: 38338812 PMCID: PMC10855707 DOI: 10.3390/ijms25031533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Biosensors based on allosteric transcription factors have been widely used in synthetic biology. In this study, we utilized the Acinetobacter ADP1 transcription factor PobR to develop a biosensor activating the PpobA promoter when bound to its natural ligand, 4-hydroxybenzoic acid (4HB). To screen for PobR mutants responsive to 4-hydroxyphenylpyruvate(HPP), we developed a dual selection system in E. coli. The positive selection of this system was used to enrich PobR mutants that identified the required ligands. The following negative selection eliminated or weakened PobR mutants that still responded to 4HB. Directed evolution of the PobR library resulted in a variant where PobRW177R was 5.1 times more reactive to 4-hydroxyphenylpyruvate than PobRWT. Overall, we developed an efficient dual selection system for directed evolution of biosensors.
Collapse
Affiliation(s)
- Hongxuan Du
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaoyao Liang
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianing Li
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
| | - Xinyao Yuan
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
| | - Fenglin Tao
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
| | - Chengjie Dong
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Zekai Shen
- School of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Guangchao Sui
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Aulin College, Northeast Forestry University, Harbin 150040, China
| | - Pengchao Wang
- School of Life Science, Northeast Forestry University, Harbin 150040, China; (H.D.); (Y.L.); (J.L.); (F.T.)
- NEFU-China iGEM Team, Northeast Forestry University, Harbin 150040, China;
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China
- Aulin College, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
23
|
Guan A, Hou Y, Yang R, Qin J. Enzyme engineering for functional lipids synthesis: recent advance and perspective. BIORESOUR BIOPROCESS 2024; 11:1. [PMID: 38647956 PMCID: PMC10992173 DOI: 10.1186/s40643-023-00723-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/24/2023] [Indexed: 04/25/2024] Open
Abstract
Functional lipids, primarily derived through the modification of natural lipids by various processes, are widely acknowledged for their potential to impart health benefits. In contrast to chemical methods for lipid modification, enzymatic catalysis offers distinct advantages, including high selectivity, mild operating conditions, and reduced byproduct formation. Nevertheless, enzymes face challenges in industrial applications, such as low activity, stability, and undesired selectivity. To address these challenges, protein engineering techniques have been implemented to enhance enzyme performance in functional lipid synthesis. This article aims to review recent advances in protein engineering, encompassing approaches from directed evolution to rational design, with the goal of improving the properties of lipid-modifying enzymes. Furthermore, the article explores the future prospects and challenges associated with enzyme-catalyzed functional lipid synthesis.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Run Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
24
|
Xi C, Diao J, Moon TS. Advances in ligand-specific biosensing for structurally similar molecules. Cell Syst 2023; 14:1024-1043. [PMID: 38128482 PMCID: PMC10751988 DOI: 10.1016/j.cels.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/23/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023]
Abstract
The specificity of biological systems makes it possible to develop biosensors targeting specific metabolites, toxins, and pollutants in complex medical or environmental samples without interference from structurally similar compounds. For the last two decades, great efforts have been devoted to creating proteins or nucleic acids with novel properties through synthetic biology strategies. Beyond augmenting biocatalytic activity, expanding target substrate scopes, and enhancing enzymes' enantioselectivity and stability, an increasing research area is the enhancement of molecular specificity for genetically encoded biosensors. Here, we summarize recent advances in the development of highly specific biosensor systems and their essential applications. First, we describe the rational design principles required to create libraries containing potential mutants with less promiscuity or better specificity. Next, we review the emerging high-throughput screening techniques to engineer biosensing specificity for the desired target. Finally, we examine the computer-aided evaluation and prediction methods to facilitate the construction of ligand-specific biosensors.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jinjin Diao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
25
|
Li Z, Deng Y, Yang GY. Growth-coupled high throughput selection for directed enzyme evolution. Biotechnol Adv 2023; 68:108238. [PMID: 37619825 DOI: 10.1016/j.biotechadv.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Directed enzyme evolution has revolutionized the rapid development of enzymes with desired properties. However, the lack of a high-throughput method to identify the most suitable variants from a large pool of genetic diversity poses a major bottleneck. To overcome this challenge, growth-coupled in vivo high-throughput selection approaches (GCHTS) have emerged as a novel selection system for enzyme evolution. GCHTS links the survival of the host cell with the properties of the target protein, resulting in a screening system that is easily measurable and has a high throughput-scale limited only by transformation efficiency. This allows for the rapid identification of desired variants from a pool of >109 variants in each experiment. In recent years, GCHTS approaches have been extensively utilized in the directed evolution of multiple enzymes, demonstrating success in catalyzing non-native substrates, enhancing catalytic activity, and acquiring novel functions. This review introduces three main strategies employed to achieve GCHTS: the elimination of toxic compounds via desired variants, enabling host cells to thrive in hazardous conditions; the complementation of an auxotroph with desired variants, where essential genes for cell growth have been eliminated; and the control of the transcription or expression of a reporter gene related to host cell growth, regulated by the desired variants. Additionally, we highlighted the recent developments in the in vivo continuous evolution of enzyme technology, including phage-assisted continuous evolution (PACE) and orthogonal DNA Replication (OrthoRep). Furthermore, this review discusses the challenges and future prospects in the field of growth-coupled selection for protein engineering.
Collapse
Affiliation(s)
- Zhengqun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
26
|
Liu Z, Chen S, Wu J. Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 2023; 41:1168-1181. [PMID: 37088569 DOI: 10.1016/j.tibtech.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Inspired by natural evolution, directed evolution randomly mutates the gene of interest through artificial evolution conditions with variants being screened for the required properties. Directed evolution is vital to the enhancement of protein properties and comprises the construction of libraries with considerable diversity as well as screening methods with sufficient efficiency as key steps. Owing to the various characteristics of proteins, specific methods are urgently needed for library screening, which is one of the main limiting factors in accelerating evolution. This review initially organizes the principles of ultrahigh-throughput screening from the perspective of protein properties. It then provides a comprehensive introduction to the latest progress and future trends in ultrahigh-throughput screening technologies for directed evolution.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
27
|
Küng C, Vanella R, Nash MA. Directed evolution of Rhodotorula gracilisd-amino acid oxidase using single-cell hydrogel encapsulation and ultrahigh-throughput screening. REACT CHEM ENG 2023; 8:1960-1968. [PMID: 37496730 PMCID: PMC10366730 DOI: 10.1039/d3re00002h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/15/2023] [Indexed: 07/28/2023]
Abstract
Engineering catalytic and biophysical properties of enzymes is an essential step en route to advanced biomedical and industrial applications. Here, we developed a high-throughput screening and directed evolution strategy relying on single-cell hydrogel encapsulation to enhance the performance of d-Amino acid oxidase from Rhodotorula gracilis (RgDAAOx), a candidate enzyme for cancer therapy. We used a cascade reaction between RgDAAOx variants surface displayed on yeast and horseradish peroxidase (HRP) in the bulk media to trigger enzyme-mediated crosslinking of phenol-bearing fluorescent alginate macromonomers, resulting in hydrogel formation around single yeast cells. The fluorescent hydrogel capsules served as an artificial phenotype and basis for pooled library screening by fluorescence activated cell sorting (FACS). We screened a RgDAAOx variant library containing ∼106 clones while lowering the d-Ala substrate concentration over three sorting rounds in order to isolate variants with low Km. After three rounds of FACS sorting and regrowth, we isolated and fully characterized four variants displayed on the yeast surface. We identified variants with a more than 5-fold lower Km than the parent sequence, with an apparent increase in substrate binding affinity. The mutations we identified were scattered across the RgDAAOx structure, demonstrating the difficulty in rationally predicting allosteric sites and highlighting the advantages of scalable library screening technologies for evolving catalytic enzymes.
Collapse
Affiliation(s)
- Christoph Küng
- Institute of Physical Chemistry, Department of Chemistry, University of Basel 4058 Basel Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich 4058 Basel Switzerland
| | - Rosario Vanella
- Institute of Physical Chemistry, Department of Chemistry, University of Basel 4058 Basel Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich 4058 Basel Switzerland
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel 4058 Basel Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich 4058 Basel Switzerland
| |
Collapse
|